• Title/Summary/Keyword: non-uniformly

Search Result 340, Processing Time 0.021 seconds

Optimal Design Method of the Cooling Channel for Manufacturing the Hot Stamped Component with Uniform Strength and Application to V-bending Process (균일 강도 핫스템핑 부품의 제조를 위한 냉각채널 최적 설계 및 V-벤딩 공정에의 적용)

  • Lim, Woo-Seung;Choi, Hong-Seok;Nam, Ki-Ju;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.63-72
    • /
    • 2011
  • In recent years, hot-stamped components are more increasingly used in the automotive industry in order to reduce weight and to improve the strength of vehicles. In hot stamping process, blank is hot formed and press hardened in a tool. However, in hot stamping without cooling channel, temperature of the tool increases gradually in mass production thus cannot meet the critical cooling rate to obtain high strength over 1500MPa. Warpage occurs in the hot stamped component due to non-uniform stress state caused by unbalanced cooling. Therefore, tools should be uniformly as well as rapidly cooled down by the coolant which flows through cooling channel. In this paper, optimal design method of cooling channel to obtain uniform and high strength of the component is proposed. Optimized cooling channel is applied to the hot press V-bending process. As a result of measuring strength, hardness and microstructure of the hot formed parts, it is known that the design methodology of cooling channel is effective to the hot stamping process.

New In-Orbit Pixel Correction Method

  • Kim Youngsun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Chang Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.604-607
    • /
    • 2005
  • All CCD pixels do not react uniformly even if the light of same radiance enters into the camera. This comes from the different camera optical characteristics, the read-out characteristics, the pixel own characteristics and so on. Usually, the image data of satellite camera can be corrected by the various image-processing methods in the ground. However, sometimes, the in-orbit correction is needed to get the higher quality image. Especially high frequency pixel correction in the middle of in-orbit mission is needed because the in-orbit data compression with the high frequency loss is essential to transmit many data in real time due to the limited RF bandwidth. In this case, this high frequency correction can prevent have to have any unnecessary high frequency loss. This in-orbit correction can be done by the specific correction table, which consists of the gain and the offset correction value for each pixel. So, it is very important to get more accurate correction table for good correction results. This paper shows the new algorithm to get accurate pixel correction table. This algorithm shall be verified theoretically and also verified with the various simulation and the test results.

  • PDF

A Printing Process Combining Screen Printing with Reverse Off-set for a Fine Patterning of Electrodes on Large Area Substrate (스크린 인쇄와 리버스 오프셋 인쇄를 혼합한 대면적 미세 전극용 인쇄공정)

  • Park, Ji-Eun;Song, Chung-Kun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.374-380
    • /
    • 2011
  • In this paper a printing process for patterning electrodes on large area substrate was developed by combining screen printing with reverse off-set printing. Ag ink was uniformly coated by screen printing. And then etching resist (ER) was patterned in the Ag film by reverse off-set printing, and then the non-desired Ag film was etched off by etchant. Finally, the ER was stripped-off to obtain the final Ag patterns. We extracted the suitable conditions of reverse Using the process we successfully fabricated gate electrodes and scan bus lines of OTFT-backplane used for e-paper, in which the diagonal size was 6 inch, the resolution $320{\times}240$, the minimum line width 30 um, and sheet resistance 1 ${\Omega}/{\Box}$.

Compensation of Geometric Error by the Correction of Control Surface (제어곡면 수정에 의한 기하오차 보정)

  • Ko, Tae-Jo;Park, Sang-Shin;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.97-103
    • /
    • 2001
  • Accuracy of a machined part is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the relative motion is the geometric errors of a machine tool. In this study, firstly, geometric errors are measured by laser interferometer, and the positioning error of each control point selected uniformly on the control surface CAD model can be estimated from th oirm shaping model and geometric error data base. Where a form shaping function is derived from the link of homogeneous transformation matrix. Secondly, control points are shifted to the estimated amount of positioning errors. A new control surface is modeled with NURBS(Non Uniform Rational B-Spline) surface approximation to the shifted control points. By generating tool paths to the redesigned control surface, we reduce the machining error quite.

  • PDF

Flexural analysis of thermally actuated fiber reinforced shape memory polymer composite

  • Tiwari, Nilesh;Shaikh, A.A.
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.337-359
    • /
    • 2019
  • Shape Memory Polymer Composites (SMPC) have gained popularity over the last few decades due to its flexible shape memory behaviour over wide range of strains and temperatures. In this paper, non-linear bending analysis has been carried out for SMPC beam under the application of uniformly distributed transverse load (UDL). Simplified C0 continuity Finite Element Method (FEM) based on Higher Order Shear Deformation Theory (HSDT) has been adopted for flexural analysis of SMPC. The numerical solutions are obtained by iterative Newton Raphson method. Material properties of SMPC with Shape Memory Polymer (SMP) as matrix and carbon fibre as reinforcements, have been calculated by theory of volume averaging. Effect of temperature on SMPC has been evaluated for numerous parameters for instance number of layers, aspect ratio, boundary conditions, volume fraction of carbon fiber and laminate stacking orientation. Moreover, deflection profile over unit length and behavior of stresses across thickness are also presented to elaborate the effect of glass transition temperature (Tg). Present study provides detailed explanation on effect of different parameters on the bending of SMPC beam for large strain over a broad span of temperature from 273-373K, which encompasses glass transition region of SMPC.

Thermal Performance Evaluations of Tungsten/Yttria as Nozzle Throat Insert Material for Long Duration Firing (장시간 연소 텅스텐/이트리아 노즐목 삽입재의 내열성능 평가)

  • Kang, Yoon-Goo;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.200-205
    • /
    • 2010
  • Heat-resistance of W/$Y_2O_3$ as throat insert material was evaluated to develop rocket motor keeping thrust uniformly under condition of high-temperature, high-pressure and long-burn time. Test was conducted with varying burn time, and test results were compared with CIT. Test showed that ablation rate was decreased according as burn time was increased, and that ablation rate of W/$Y_2O_3$ was about 55 % of CIT. Macro/micro structures of throat insert did not show a peculiar phenomenon by increased burn time. In addition, the vacuum heat treatment is effective for the prevention of crack in throat insert.

3D Shape Comparison Using Modal Strain Energy (모달 스트레인 에너지를 이용한 3차원 형상 비교)

  • 최수미
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.3
    • /
    • pp.427-437
    • /
    • 2004
  • Shape comparison between 3D models is essential for shape recognition, retrieval, classification, etc. In this paper, we propose a method for comparing 3D shapes, which is invariant under translation, rotation and scaling of models and is robust to non-uniformly distributed and incomplete data sets. first, a modal model is constructed from input data using vibration modes and then shape similarity is evaluated with modal strain energy. The proposed method provides global-to-local ordering of shape deformation using vibration modes ordered by frequency Thus, we evaluated similarity in terms of global properties of shape without being affected localised shape features using ordered shape representation and modal strain one energy.

  • PDF

Modeling of Injector Orifice for the Flow Analysis in LOX Manifold of Liquid Rocket (액체로켓의 산화제 매니폴드 내 유동해석을 위한 분사공 모델링)

  • Kim, Hak-Jong;Byun, Yung-Hwan;Cho, Won-Kook;Seol, Woo-Seok;Na, Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.1-9
    • /
    • 2004
  • The flow in the LOX manifold of liquid rocket (KSR-III) has been analyzed using a CAE technique with an objective of modeling injector orifices in order to reduce the computational cost for the flow analysis without much losing the accuracy of capturing the flow physics. The numerical result shows that the flow just above the injector orifices is not uniformly distributed in terms of pressure and mass flow rate in case pre-distributors are not equipped inside the manifold. This non-uniformity of mass flux is attributed to the presence of large-scale flow patterns. Several boundary conditions which were designed to effectively replace the presence of injector orifices have been tested and it was found that a simple modeling can be possible by mimicking the actual shape of the orifices.

Strength and behaviour of reinforced SCC wall panels in one-way action

  • Ganesan, N.;Indiraa, P.V.;Prasad, S. Rajendra
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.1-18
    • /
    • 2010
  • A total of 28 wall panels were cast and tested under uniformly distributed axial load in one-way in-plane action to study the effect of slenderness ratio (SR) and aspect ratio (AR) on the ultimate load. Two concrete formulations, normal concrete (NC) and self compacting concrete (SCC), were used for the casting of wall panels. Out of 28 wall panels, 12 were made of NC and the remaining 16 panels were of SCC. All the 12 NC panels and 12 out of 16 SCC panels were used to study the influence of SR and the remaining 4 SCC panels were tested to study the effect of AR on the ultimate load. A brief review of studies available in literature on the strength and behaviour of reinforced concrete (RC) wall panels is presented. Load-deformation response was recorded and analyzed. The ultimate load of SCC wall panels decreases non-linearly with the increase in SR and decreases linearly with increasing values of AR. Based on this study a method is proposed to predict the ultimate load of reinforced SCC wall panels. The modified method includes the effect of SR, AR and concrete strength.

Prediction of the load-displacement response of ground anchors via the load-transfer method

  • Chalmovsky, Juraj;Mica, Lumir
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.359-370
    • /
    • 2020
  • Prestressed ground anchors are important structural elements in geotechnical engineering. Despite their widespread usage, the design process is often significantly simplified. One of the major drawbacks of commonly used design methods is the assumption that skin friction is mobilized uniformly along an anchor's fixed length, one consequence of which is that a progressive failure phenomenon is neglected. The following paper introduces an alternative design approach - a computer algorithm employing the load-transfer method. The method is modified for the analysis of anchors and combined with a procedure for the derivation of load-transfer functions based on commonly available laboratory tests. The load-transfer function is divided into a pre-failure (hardening) and a post-failure (softening) segment. In this way, an aspect of non-linear stress-strain soil behavior is incorporated into the algorithm. The influence of post-grouting in terms of radial stress update, diameter enlargement, and grout consolidation is included. The axial stiffness of the anchor body is not held constant. Instead, it gradually decreases as a direct consequence of tensile cracks spreading in the grout material. An analysis of the program's operation is performed via a series of parametric studies in which the influence of governing parameters is investigated. Finally, two case studies concerning three investigation anchor load tests are presented.