1 |
Kausar, A. (2016), "Nanodiamond tethered epoxy/polyurethane interpenetrating network nanocomposite: Physical properties and thermoresponsive shape-memory behavior", Int. J. Polym. Anal. Characteriz., 21(4), 348-358. https://doi.org/10.1080/1023666X.2016.1156911
DOI
|
2 |
Koerner, H., Strong, R.J., Smith, M.L., Wang, D.H., Tan, L.S., Lee, K.M., White, T.J. and Vaia, R.A. (2013), "Polymer design for high temperature shape memory: Low crosslink density polyimides", Polym., 54(1), 391-402. https://doi.org/10.1016/j.polymer.2012.11.007
DOI
|
3 |
Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, Int. J., 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501
|
4 |
Lan, X., Liu, Y., Lv, H., Wang, X., Leng, J. and Du, S. (2009), "Fiber reinforced shape-memory polymer composite and its application in a deployable hinge", Smart Mater. Struct., 18(2), 024002. https://doi.org/10.1088/0964-1726/18/2/024002
DOI
|
5 |
Lan, X., Liu, L., Liu, Y., Leng, J. and Du, S. (2014), "Post microbuckling mechanics of fibre-reinforced shape-memory polymers undergoing flexure deformation", Mech. Mater., 72, 46-60. https://doi.org/10.1016/j.mechmat.2013.05.012
DOI
|
6 |
Lendlein, A., Jiang, H., Junger, O. and Langer, R. (2005), "Light-induced shape-memory polymers", Nature, 434(7035), 879-882. https://doi.org/10.1038/nature03496
DOI
|
7 |
Leng, J., Lan, X., Liu, Y. and Du, S. (2011), "Shape-memory polymers and their composites: stimulus methods and applications", Progress Mater. Sci., 56(7), 1077-1135. https://doi.org/10.1016/j.pmatsci.2011.03.001
DOI
|
8 |
Li, F., Liu, L., Lan, X., Zhou, X., Bian, W., Liu, Y. and Leng, J. (2016), "Preliminary design and analysis of a cubic deployable support structure based on shape memory polymer composite", Int. J. Smart Nano Mater., 7(2), 106-118. https://doi.org/10.1080/19475411.2016.1212948
DOI
|
9 |
Li, F., Scarpa, F., Lan, X., Liu, L., Liu, Y. and Leng, J. (2019), "Bending shape recovery of unidirectional carbon fiber reinforced epoxy-based shape memory polymer composites", Compos. Part A: Appl. Sci. Manuf., 116, 169-179. https://doi.org/10.1016/j.compositesa.2018.10.037
DOI
|
10 |
Liu, Y., Gall, K., Dunn, M.L. and McCluskey, P. (2003), "Thermomechanical recovery couplings of shape memory polymers in flexure", Smart Mater. Struct., 12(6), 947. https://doi.org/10.1088/0964-1726/12/6/012
DOI
|
11 |
Lal, A., Singh, B.N. and Kumar, R. (2007), "Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties", Struct. Eng. Mech., Int. J., 27(2), 199-222. https://doi.org/10.12989/sem.2007.27.2.199
DOI
|
12 |
Baghani, M., Naghdabadi, R., Arghavani, J. and Sohrabpour, S. (2012), "A constitutive model for shape memory polymers with application to torsion of prismatic bars", J. Intel. Mater. Syst. Struct., 23(2), 107-116. https://doi.org/10.1177/1045389X11431745
DOI
|
13 |
Baghani, M., Mohammadi, H. and Naghdabadi, R. (2014), "An analytical solution for shape-memorypolymer Euler-Bernoulli beams under bending", Int. J. Mech. Sci., 84, 84-90. https://doi.org/10.1016/j.ijmecsci.2014.04.009
DOI
|
14 |
Buehler, W.J., Gilfrich, J.V. and Wiley, R.C. (1963), "Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi", J. Appl. Phys., 34(5), 1475-1477. https://doi.org/10.1063/1.1729603
DOI
|
15 |
Campbell, D., Mallick, K. and Lake, M. (2004), "A Study of the Compession Mechanics of Soft-Resin Composites", Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, CA, USA, April.
|
16 |
Cho, J.W., Kim, J.W., Jung, Y.C. and Goo, N.S. (2005), "Electroactive shape-memory polyurethane composites incorporating carbon nanotubes", Macromol. Rapid Commun., 26(5), 412-416. https://doi.org/10.1002/marc.200400492
DOI
|
17 |
Westbrook, K.K., Kao, P.H., Castro, F., Ding, Y. and Qi, H.J. (2011), "A 3D finite deformation constitutive model for amorphous shape memory polymers: a multi-branch modeling approach for nonequilibrium relaxation processes", Mech. Mater., 43(12), 853-869. https://doi.org/10.1016/j.mechmat.2011.09.004
DOI
|
18 |
Wang, E., Dong, Y., Islam, M.Z., Yu, L., Liu, F., Chen, S., Qi, X., Zhu, Y., Fu, Y., Xu, Z. and Hu, N. (2019a), "Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites", Compos. Sci. Technol., 169, 209-216. https://doi.org/10.1016/j.compscitech.2018.11.022
DOI
|
19 |
Wang, E., Wu, Y., Islam, M.Z., Dong, Y., Zhu, Y., Liu, F., Fu, Y., Xu, Z. and Hu, N. (2019b), "A novel reduced graphene oxide/epoxy sandwich structure composite film with thermo-, electro-and lightresponsive shape memory effect", Mater. Lett., 238, 54-57. https://doi.org/10.1016/j.matlet.2018.11.138
DOI
|
20 |
Ware, T., Simon, D., Hearon, K., Liu, C., Shah, S., Reeder, J., Khodaparast, N., Kilgard, M.P., Maitland, D.J., Rennaker, R.L. and Voit, W.E. (2012), "Three-Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces", Macromol. Mater. Eng., 297(12), 1193-1202. https://doi.org/10.1002/mame.201200241
DOI
|
21 |
Xie, T. and Rousseau, I.A. (2009), "Facile tailoring of thermal transition temperatures of epoxy shape memory polymers", Polymer, 50(8), 1852-1856. https://doi.org/10.1016/j.polymer.2009.02.035
DOI
|
22 |
Yang, D. (2000), "Shape memory alloy and smart hybrid composites-advanced materials for the 21st Century", Mater. Des., 21(6), 503-505. https://doi.org/10.1016/S0261-3069(00)00008-X
DOI
|
23 |
Zeng, H., Leng, J., Gu, J. and Sun, H. (2018), "A thermoviscoelastic model incorporated with uncoupled structural and stress relaxation mechanisms for amorphous shape memory polymers", Mech. Mater., 124, 18-25. https://doi.org/10.1016/j.mechmat.2018.05.010
DOI
|
24 |
Zia, Y.B. and Khan, A.A. (2018), "Comparison of various higher order shear deformation theories for static and modal analysis of composite beam", Proceedings of IOP Conference Series: Materials Science and Engineering, 377, 012170. https://doi.org/10.1088/1757-899X/377/1/012170
DOI
|
25 |
Zhang, C.S. and Ni, Q.Q. (2007), "Bending behavior of shape memory polymer based laminates", Compos. Struct., 78(2), 153-161. https://doi.org/10.1016/j.compstruct.2005.08.029
DOI
|
26 |
Zhang, J., Dui, G. and Liang, X. (2018), "Revisiting the micro-buckling of carbon fibers in elastic memory composite plates under pure bending", In. J. Mech. Sci., 136, 339-348. https://doi.org/10.1016/j.ijmecsci.2017.12.018
DOI
|
27 |
Zhou, J., Li, H., Liu, W., Dugnani, R., Tian, R., Xue, W., Chen, Y., Guo, Y., Duan, H. and Liu, H. (2016), "A facile method to fabricate polyurethane based graphene foams/epoxy/carbon nanotubes composite for electro-active shape memory application", Compos. Part A: Appl. Sci. Manuf., 91, 292-300. https://doi.org/10.1016/j.compositesa.2016.10.021
DOI
|
28 |
Ghosh, P. and Srinivasa, A. (2011), "Modeling and parameter optimization of the shape memory polymer response", Mech. Mater.
|
29 |
Feldkamp, D.M. and Rousseau, I.A. (2010), "Effect of the Deformation Temperature on the Shape-Memory Behavior of Epoxy Networks", Macromol. Mater. Eng., 295(8), 726-734. https://doi.org/10.1002/mame.201000035
DOI
|
30 |
Gao, J., Chen, W., Yu, B., Fan, P., Zhao, B., Hu, J., Zhang, D., Fang, G. and Peng, F. (2019), "Effect of temperature on the mechanical behaviours of a single-ply weave-reinforced shape memory polymer composite", Compos. Part B: Eng., 159, 336-345. https://doi.org/10.1016/j.compositesb.2018.09.029
DOI
|
31 |
Ghosh, P., Reddy, J.N. and Srinivasa, A.R. (2013), "Development and implementation of a beam theory model for shape memory polymers", Int. J. Solids Struct., 50(3-4), 595-608. https://doi.org/10.1016/j.ijsolstr.2012.10.024
DOI
|
32 |
Gu, J., Leng, J. and Sun, H. (2017), "A constitutive model for amorphous shape memory polymers based on thermodynamics with internal state variables", Mech. Mater., 111, 1-14. https://doi.org/10.1016/j.mechmat.2017.04.008
DOI
|
33 |
Gu, J., Xie, Z., Wang, S., Sun, H. and Zhang, X. (2018), "Thermo-mechanical modeling of woven fabric reinforced shape memory polymer composites", Mech. Adv. Mater. Struct., 26(12), 1042-1052. https://doi.org/10.1080/15376494.2018.1430266
|
34 |
Lu, J., Arsalan, A., Dong, Y., Zhu, Y., Qian, C., Wang, R., Cuilan, C., Fu, Y., Ni, Q.Q. and Ali, K.N. (2017), "Shape memory effect and recovery stress property of carbon nanotube/waterborne epoxy nanocomposites investigated via TMA", Polym. Test., 59, 462-469. https://doi.org/10.1016/j.polymertesting.2017.03.001
DOI
|
35 |
Gu, J., Leng, J., Sun, H., Zeng, H. and Cai, Z. (2019), "Thermomechanical constitutive modeling of fiber reinforced shape memory polymer composites based on thermodynamics with internal state variables", Mech. Mater., 130, 9-19. https://doi.org/10.1016/j.mechmat.2019.01.004
DOI
|
36 |
Guo, J., Wang, Z., Tong, L. and Liang, W. (2016), "Effects of short carbon fibres and nanoparticles on mechanical, thermal and shape memory properties of SMP hybrid nanocomposites", Compos. Part B: Eng., 90, 152-159. https://doi.org/10.1016/j.compositesb.2015.12.010
DOI
|
37 |
Liu, Y., Du, H., Liu, L. and Leng, J. (2014), "Shape memory polymers and their composites in aerospace applications: a review", Smart Mater. Struct., 23(2), 023001. https://doi.org/10.1088/0964-1726/23/2/023001
DOI
|
38 |
Mahieux, C.A. and Reifsnider, K.L. (2001), "Property modeling across transition temperatures in polymers: a robust stiffness-temperature model", Polymer, 42(7), 3281-3291. https://doi.org/10.1106/009524402022348
DOI
|
39 |
Mohr, R., Kratz, K., Weigel, T., Lucka-Gabor, M., Moneke, M. and Lendlein, A. (2006), "Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers", Proceedings of the National Academy of Sciences, 103(10), 3540-3545.
DOI
|
40 |
Mu, T., Liu, L., Lan, X., Liu, Y. and Leng, J. (2018), "Shape memory polymers for composites", Compos. Sci. Technol., 160, 169-198. https://doi.org/10.1016/j.compscitech.2018.03.018
DOI
|
41 |
Pearce, G.M.K., Mukkavilli, A., Chowdhury, N.T., Lim, S.H., Prusty, B.G., Crosky, A. and Kelly, D.W. (2019), "Strain Invariant Failure Theory-Part 1: An extensible framework for predicting the mechanical performance of fibre reinforced polymer composites", Compos. Struct., 209, 1022-1034. https://doi.org/10.1016/j.compstruct.2018.03.084
DOI
|
42 |
Rodriguez, J.N., Yu, Y.J., Miller, M.W., Wilson, T.S., Hartman, J., Clubb, F.J., Gentry, B. and Maitland, D.J. (2012), "Opacification of shape memory polymer foam designed for treatment of intracranial aneurysms", Annals Biomed. Eng., 40(4), 883-897. https://doi.org/10.1007/s10439-011-0468-1
DOI
|
43 |
Shegokar, N.L. and Lal, A. (2013), "Stochastic nonlinear bending response of piezoelectric functionally graded beam subjected to thermoelectromechanical loadings with random material properties", Compos. Struct., 100, 17-33. https://doi.org/10.1142/S2047684117500208
DOI
|
44 |
Nurly, H., Yan, Q., Song, B. and Shi, Y. (2019), "Effect of carbon nanotubes reinforcement on the polyvinyl alcohol-polyethylene glycol double-network hydrogel composites: A general approach to shape memory and printability", Eur. Polym. J., 110, 114-122. https://doi.org/10.1016/j.eurpolymj.2018.11.006
DOI
|
45 |
Oh, S.H., Kang, S.G. and Lee, J.H. (2006), "Degradation behavior of hydrophilized PLGA scaffolds prepared by melt-molding particulate-leaching method: comparison with control hydrophobic one", J. Mater. Sci.: Mater. Med., 17(2), 131-137. https://doi.org/10.1007/s10856-006-6816-2
DOI
|
46 |
Patel, K.K. and Purohit, R. (2019), "Improved shape memory and mechanical properties of microwaveinduced thermoplastic polyurethane/Graphene nanoplatelets composites", Sensors Actuat. A: Phys., 285, 17-24. https://doi.org/10.1016/j.sna.2018.10.049
DOI
|
47 |
Poilane, C., Delobelle, P., Lexcellent, C., Hayashi, S. and Tobushi, H. (2000), "Analysis of the mechanical behavior of shape memory polymer membranes by nanoindentation, bulging and point membrane deflection tests", Thin Solid Films, 379(1-2), 156-165. https://doi.org/10.1016/S0040-6090(00)01401-2
DOI
|
48 |
Qi, H.J., Nguyen, T.D., Castro, F., Yakacki, C.M. and Shandas, R. (2008), "Finite deformation thermomechanical behavior of thermally induced shape memory polymers", J. Mech. Phys. Solids, 56(5), 1730-1751. https://doi.org/10.1016/j.jmps.2007.12.002
DOI
|
49 |
Shi, G., Lam, K.Y. and Tay, T.E. (1998), "On efficient finite element modeling of composite beams and plates using higher-order theories and an accurate composite beam element", Compos. Struct., 41(2), 159-165. https://doi.org/10.1016/j.ijsolstr.2007.11.005
DOI
|
50 |
Shen, G.L., Hu, G. and Liu, B. (2006), Mechanics of Composite Materials, Science and Technology, Beijing, China.
|
51 |
Su, X. and Peng, X. (2018), "A 3D finite strain viscoelastic constitutive model for thermally induced shape memory polymers based on energy decomposition", Int. J. Plastic., 110, 166-182. https://doi.org/10.1016/j.ijplas.2018.07.002
DOI
|
52 |
Vernon, L.B. and Vernon, H.M. (1941), "Process of Manufacturing Articles of Thermoplastic Synthetic Resins", US Patent issued in March 1941.
|
53 |
Wang, Z.D. and Li, Z.F. (2011), "Theoretical analysis of the deformation of SMP sandwich beam in flexure", Arch. Appl. Mech., 81(11), 1667-1678. https://doi.org/10.1007/s00419-011-0510-7
DOI
|
54 |
Wang, Z., Li, Z., Xiong, Z. and Wang, L. (2010), "Theoretical studies on microbuckling mode of elastic memory composites", Acta Mechanica Solida Sinica, 23(1), 20-28. https://doi.org/10.1016/S0894-9166(10)60003-1
DOI
|
55 |
Han, X.J., Dong, Z.Q., Fan, M.M., Liu, Y., Li, J.H., Wang, Y.F., Yuan, Q.J., Li, B.J. and Zhang, S. (2012), "pH-induced shape-memory polymers", Macromol. Rapid Commun., 33(12), 1055-1060. https://doi.org/10.1002/marc.201200153
DOI
|
56 |
Quade, D., Jana, S., Morscher, G., Kannan, M. and McCorkle, L. (2018), "The effects of fiber orientation and adhesives on tensile properties of carbon fiber reinforced polymer matrix composite with embedded nickel-titanium shape memory alloys", Compos. Part A: Appl. Sci. Manuf., 114, 269-277. https://doi.org/10.1016/j.compositesa.2018.08.019
DOI
|
57 |
Quitmann, D., Gushterov, N., Sadowski, G., Katzenberg, F. and Tiller, J.C. (2014), "Environmental memory of polymer networks under stress", Adv. Mater., 26(21), 3441-3444. https://doi.org/10.1002/adma.201305698
DOI
|
58 |
Reddy, J.N. (2014), An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics, OUP, Oxford, UK.
|
59 |
Hassanzadeh-Aghdam, M.K., Ansari, R. and Mahmoodi, M.J. (2019), "Thermo-mechanical properties of shape memory polymer nanocomposites reinforced by carbon nanotubes", Mech. Mater., 129, 80-98. https://doi.org/10.1016/j.mechmat.2018.11.009
DOI
|
60 |
He, Y., Li, Y., Liu, Z. and Liew, K.M. (2017), "Buckling analysis and buckling control of thin films on shape memory polymer substrate", Eur. J. Mech.-A/Solids, 66, 356-369. https://doi.org/10.1016/j.euromechsol.2017.08.006
DOI
|
61 |
Heuwers, B., Quitmann, D., Hoeher, R., Reinders, F.M., Tiemeyer, S., Sternemann, C., Tolan, M., Katzenberg, F. and Tiller, J.C. (2013), "Stress-Induced Stabilization of Crystals in Shape Memory Natural Rubber", Macromol. Rapid Commun., 34(2), 180-184. https://doi.org/10.1002/marc.201200594
DOI
|
62 |
Jani, J.M., Leary, M., Subic, A. and Gibson, M.A. (2014), "A review of shape memory alloy research, applications and opportunities", Mater. Des., 56, 1078-1113. https://doi.org/10.1016/j.matdes.2013.11.084
DOI
|