Browse > Article
http://dx.doi.org/10.12989/amr.2019.8.4.337

Flexural analysis of thermally actuated fiber reinforced shape memory polymer composite  

Tiwari, Nilesh (Mechanical Engineering Department, S.V. National Institute of Technology)
Shaikh, A.A. (Mechanical Engineering Department, S.V. National Institute of Technology)
Publication Information
Advances in materials Research / v.8, no.4, 2019 , pp. 337-359 More about this Journal
Abstract
Shape Memory Polymer Composites (SMPC) have gained popularity over the last few decades due to its flexible shape memory behaviour over wide range of strains and temperatures. In this paper, non-linear bending analysis has been carried out for SMPC beam under the application of uniformly distributed transverse load (UDL). Simplified C0 continuity Finite Element Method (FEM) based on Higher Order Shear Deformation Theory (HSDT) has been adopted for flexural analysis of SMPC. The numerical solutions are obtained by iterative Newton Raphson method. Material properties of SMPC with Shape Memory Polymer (SMP) as matrix and carbon fibre as reinforcements, have been calculated by theory of volume averaging. Effect of temperature on SMPC has been evaluated for numerous parameters for instance number of layers, aspect ratio, boundary conditions, volume fraction of carbon fiber and laminate stacking orientation. Moreover, deflection profile over unit length and behavior of stresses across thickness are also presented to elaborate the effect of glass transition temperature (Tg). Present study provides detailed explanation on effect of different parameters on the bending of SMPC beam for large strain over a broad span of temperature from 273-373K, which encompasses glass transition region of SMPC.
Keywords
SMP; SMPC; HSDT; FEM; glass transition region;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kausar, A. (2016), "Nanodiamond tethered epoxy/polyurethane interpenetrating network nanocomposite: Physical properties and thermoresponsive shape-memory behavior", Int. J. Polym. Anal. Characteriz., 21(4), 348-358. https://doi.org/10.1080/1023666X.2016.1156911   DOI
2 Koerner, H., Strong, R.J., Smith, M.L., Wang, D.H., Tan, L.S., Lee, K.M., White, T.J. and Vaia, R.A. (2013), "Polymer design for high temperature shape memory: Low crosslink density polyimides", Polym., 54(1), 391-402. https://doi.org/10.1016/j.polymer.2012.11.007   DOI
3 Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, Int. J., 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501
4 Lan, X., Liu, Y., Lv, H., Wang, X., Leng, J. and Du, S. (2009), "Fiber reinforced shape-memory polymer composite and its application in a deployable hinge", Smart Mater. Struct., 18(2), 024002. https://doi.org/10.1088/0964-1726/18/2/024002   DOI
5 Lan, X., Liu, L., Liu, Y., Leng, J. and Du, S. (2014), "Post microbuckling mechanics of fibre-reinforced shape-memory polymers undergoing flexure deformation", Mech. Mater., 72, 46-60. https://doi.org/10.1016/j.mechmat.2013.05.012   DOI
6 Lendlein, A., Jiang, H., Junger, O. and Langer, R. (2005), "Light-induced shape-memory polymers", Nature, 434(7035), 879-882. https://doi.org/10.1038/nature03496   DOI
7 Leng, J., Lan, X., Liu, Y. and Du, S. (2011), "Shape-memory polymers and their composites: stimulus methods and applications", Progress Mater. Sci., 56(7), 1077-1135. https://doi.org/10.1016/j.pmatsci.2011.03.001   DOI
8 Li, F., Liu, L., Lan, X., Zhou, X., Bian, W., Liu, Y. and Leng, J. (2016), "Preliminary design and analysis of a cubic deployable support structure based on shape memory polymer composite", Int. J. Smart Nano Mater., 7(2), 106-118. https://doi.org/10.1080/19475411.2016.1212948   DOI
9 Li, F., Scarpa, F., Lan, X., Liu, L., Liu, Y. and Leng, J. (2019), "Bending shape recovery of unidirectional carbon fiber reinforced epoxy-based shape memory polymer composites", Compos. Part A: Appl. Sci. Manuf., 116, 169-179. https://doi.org/10.1016/j.compositesa.2018.10.037   DOI
10 Liu, Y., Gall, K., Dunn, M.L. and McCluskey, P. (2003), "Thermomechanical recovery couplings of shape memory polymers in flexure", Smart Mater. Struct., 12(6), 947. https://doi.org/10.1088/0964-1726/12/6/012   DOI
11 Lal, A., Singh, B.N. and Kumar, R. (2007), "Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties", Struct. Eng. Mech., Int. J., 27(2), 199-222. https://doi.org/10.12989/sem.2007.27.2.199   DOI
12 Baghani, M., Naghdabadi, R., Arghavani, J. and Sohrabpour, S. (2012), "A constitutive model for shape memory polymers with application to torsion of prismatic bars", J. Intel. Mater. Syst. Struct., 23(2), 107-116. https://doi.org/10.1177/1045389X11431745   DOI
13 Baghani, M., Mohammadi, H. and Naghdabadi, R. (2014), "An analytical solution for shape-memorypolymer Euler-Bernoulli beams under bending", Int. J. Mech. Sci., 84, 84-90. https://doi.org/10.1016/j.ijmecsci.2014.04.009   DOI
14 Buehler, W.J., Gilfrich, J.V. and Wiley, R.C. (1963), "Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi", J. Appl. Phys., 34(5), 1475-1477. https://doi.org/10.1063/1.1729603   DOI
15 Campbell, D., Mallick, K. and Lake, M. (2004), "A Study of the Compession Mechanics of Soft-Resin Composites", Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, CA, USA, April.
16 Cho, J.W., Kim, J.W., Jung, Y.C. and Goo, N.S. (2005), "Electroactive shape-memory polyurethane composites incorporating carbon nanotubes", Macromol. Rapid Commun., 26(5), 412-416. https://doi.org/10.1002/marc.200400492   DOI
17 Westbrook, K.K., Kao, P.H., Castro, F., Ding, Y. and Qi, H.J. (2011), "A 3D finite deformation constitutive model for amorphous shape memory polymers: a multi-branch modeling approach for nonequilibrium relaxation processes", Mech. Mater., 43(12), 853-869. https://doi.org/10.1016/j.mechmat.2011.09.004   DOI
18 Wang, E., Dong, Y., Islam, M.Z., Yu, L., Liu, F., Chen, S., Qi, X., Zhu, Y., Fu, Y., Xu, Z. and Hu, N. (2019a), "Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites", Compos. Sci. Technol., 169, 209-216. https://doi.org/10.1016/j.compscitech.2018.11.022   DOI
19 Wang, E., Wu, Y., Islam, M.Z., Dong, Y., Zhu, Y., Liu, F., Fu, Y., Xu, Z. and Hu, N. (2019b), "A novel reduced graphene oxide/epoxy sandwich structure composite film with thermo-, electro-and lightresponsive shape memory effect", Mater. Lett., 238, 54-57. https://doi.org/10.1016/j.matlet.2018.11.138   DOI
20 Ware, T., Simon, D., Hearon, K., Liu, C., Shah, S., Reeder, J., Khodaparast, N., Kilgard, M.P., Maitland, D.J., Rennaker, R.L. and Voit, W.E. (2012), "Three-Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces", Macromol. Mater. Eng., 297(12), 1193-1202. https://doi.org/10.1002/mame.201200241   DOI
21 Xie, T. and Rousseau, I.A. (2009), "Facile tailoring of thermal transition temperatures of epoxy shape memory polymers", Polymer, 50(8), 1852-1856. https://doi.org/10.1016/j.polymer.2009.02.035   DOI
22 Yang, D. (2000), "Shape memory alloy and smart hybrid composites-advanced materials for the 21st Century", Mater. Des., 21(6), 503-505. https://doi.org/10.1016/S0261-3069(00)00008-X   DOI
23 Zeng, H., Leng, J., Gu, J. and Sun, H. (2018), "A thermoviscoelastic model incorporated with uncoupled structural and stress relaxation mechanisms for amorphous shape memory polymers", Mech. Mater., 124, 18-25. https://doi.org/10.1016/j.mechmat.2018.05.010   DOI
24 Zia, Y.B. and Khan, A.A. (2018), "Comparison of various higher order shear deformation theories for static and modal analysis of composite beam", Proceedings of IOP Conference Series: Materials Science and Engineering, 377, 012170. https://doi.org/10.1088/1757-899X/377/1/012170   DOI
25 Zhang, C.S. and Ni, Q.Q. (2007), "Bending behavior of shape memory polymer based laminates", Compos. Struct., 78(2), 153-161. https://doi.org/10.1016/j.compstruct.2005.08.029   DOI
26 Zhang, J., Dui, G. and Liang, X. (2018), "Revisiting the micro-buckling of carbon fibers in elastic memory composite plates under pure bending", In. J. Mech. Sci., 136, 339-348. https://doi.org/10.1016/j.ijmecsci.2017.12.018   DOI
27 Zhou, J., Li, H., Liu, W., Dugnani, R., Tian, R., Xue, W., Chen, Y., Guo, Y., Duan, H. and Liu, H. (2016), "A facile method to fabricate polyurethane based graphene foams/epoxy/carbon nanotubes composite for electro-active shape memory application", Compos. Part A: Appl. Sci. Manuf., 91, 292-300. https://doi.org/10.1016/j.compositesa.2016.10.021   DOI
28 Ghosh, P. and Srinivasa, A. (2011), "Modeling and parameter optimization of the shape memory polymer response", Mech. Mater.
29 Feldkamp, D.M. and Rousseau, I.A. (2010), "Effect of the Deformation Temperature on the Shape-Memory Behavior of Epoxy Networks", Macromol. Mater. Eng., 295(8), 726-734. https://doi.org/10.1002/mame.201000035   DOI
30 Gao, J., Chen, W., Yu, B., Fan, P., Zhao, B., Hu, J., Zhang, D., Fang, G. and Peng, F. (2019), "Effect of temperature on the mechanical behaviours of a single-ply weave-reinforced shape memory polymer composite", Compos. Part B: Eng., 159, 336-345. https://doi.org/10.1016/j.compositesb.2018.09.029   DOI
31 Ghosh, P., Reddy, J.N. and Srinivasa, A.R. (2013), "Development and implementation of a beam theory model for shape memory polymers", Int. J. Solids Struct., 50(3-4), 595-608. https://doi.org/10.1016/j.ijsolstr.2012.10.024   DOI
32 Gu, J., Leng, J. and Sun, H. (2017), "A constitutive model for amorphous shape memory polymers based on thermodynamics with internal state variables", Mech. Mater., 111, 1-14. https://doi.org/10.1016/j.mechmat.2017.04.008   DOI
33 Gu, J., Xie, Z., Wang, S., Sun, H. and Zhang, X. (2018), "Thermo-mechanical modeling of woven fabric reinforced shape memory polymer composites", Mech. Adv. Mater. Struct., 26(12), 1042-1052. https://doi.org/10.1080/15376494.2018.1430266
34 Lu, J., Arsalan, A., Dong, Y., Zhu, Y., Qian, C., Wang, R., Cuilan, C., Fu, Y., Ni, Q.Q. and Ali, K.N. (2017), "Shape memory effect and recovery stress property of carbon nanotube/waterborne epoxy nanocomposites investigated via TMA", Polym. Test., 59, 462-469. https://doi.org/10.1016/j.polymertesting.2017.03.001   DOI
35 Gu, J., Leng, J., Sun, H., Zeng, H. and Cai, Z. (2019), "Thermomechanical constitutive modeling of fiber reinforced shape memory polymer composites based on thermodynamics with internal state variables", Mech. Mater., 130, 9-19. https://doi.org/10.1016/j.mechmat.2019.01.004   DOI
36 Guo, J., Wang, Z., Tong, L. and Liang, W. (2016), "Effects of short carbon fibres and nanoparticles on mechanical, thermal and shape memory properties of SMP hybrid nanocomposites", Compos. Part B: Eng., 90, 152-159. https://doi.org/10.1016/j.compositesb.2015.12.010   DOI
37 Liu, Y., Du, H., Liu, L. and Leng, J. (2014), "Shape memory polymers and their composites in aerospace applications: a review", Smart Mater. Struct., 23(2), 023001. https://doi.org/10.1088/0964-1726/23/2/023001   DOI
38 Mahieux, C.A. and Reifsnider, K.L. (2001), "Property modeling across transition temperatures in polymers: a robust stiffness-temperature model", Polymer, 42(7), 3281-3291. https://doi.org/10.1106/009524402022348   DOI
39 Mohr, R., Kratz, K., Weigel, T., Lucka-Gabor, M., Moneke, M. and Lendlein, A. (2006), "Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers", Proceedings of the National Academy of Sciences, 103(10), 3540-3545.   DOI
40 Mu, T., Liu, L., Lan, X., Liu, Y. and Leng, J. (2018), "Shape memory polymers for composites", Compos. Sci. Technol., 160, 169-198. https://doi.org/10.1016/j.compscitech.2018.03.018   DOI
41 Pearce, G.M.K., Mukkavilli, A., Chowdhury, N.T., Lim, S.H., Prusty, B.G., Crosky, A. and Kelly, D.W. (2019), "Strain Invariant Failure Theory-Part 1: An extensible framework for predicting the mechanical performance of fibre reinforced polymer composites", Compos. Struct., 209, 1022-1034. https://doi.org/10.1016/j.compstruct.2018.03.084   DOI
42 Rodriguez, J.N., Yu, Y.J., Miller, M.W., Wilson, T.S., Hartman, J., Clubb, F.J., Gentry, B. and Maitland, D.J. (2012), "Opacification of shape memory polymer foam designed for treatment of intracranial aneurysms", Annals Biomed. Eng., 40(4), 883-897. https://doi.org/10.1007/s10439-011-0468-1   DOI
43 Shegokar, N.L. and Lal, A. (2013), "Stochastic nonlinear bending response of piezoelectric functionally graded beam subjected to thermoelectromechanical loadings with random material properties", Compos. Struct., 100, 17-33. https://doi.org/10.1142/S2047684117500208   DOI
44 Nurly, H., Yan, Q., Song, B. and Shi, Y. (2019), "Effect of carbon nanotubes reinforcement on the polyvinyl alcohol-polyethylene glycol double-network hydrogel composites: A general approach to shape memory and printability", Eur. Polym. J., 110, 114-122. https://doi.org/10.1016/j.eurpolymj.2018.11.006   DOI
45 Oh, S.H., Kang, S.G. and Lee, J.H. (2006), "Degradation behavior of hydrophilized PLGA scaffolds prepared by melt-molding particulate-leaching method: comparison with control hydrophobic one", J. Mater. Sci.: Mater. Med., 17(2), 131-137. https://doi.org/10.1007/s10856-006-6816-2   DOI
46 Patel, K.K. and Purohit, R. (2019), "Improved shape memory and mechanical properties of microwaveinduced thermoplastic polyurethane/Graphene nanoplatelets composites", Sensors Actuat. A: Phys., 285, 17-24. https://doi.org/10.1016/j.sna.2018.10.049   DOI
47 Poilane, C., Delobelle, P., Lexcellent, C., Hayashi, S. and Tobushi, H. (2000), "Analysis of the mechanical behavior of shape memory polymer membranes by nanoindentation, bulging and point membrane deflection tests", Thin Solid Films, 379(1-2), 156-165. https://doi.org/10.1016/S0040-6090(00)01401-2   DOI
48 Qi, H.J., Nguyen, T.D., Castro, F., Yakacki, C.M. and Shandas, R. (2008), "Finite deformation thermomechanical behavior of thermally induced shape memory polymers", J. Mech. Phys. Solids, 56(5), 1730-1751. https://doi.org/10.1016/j.jmps.2007.12.002   DOI
49 Shi, G., Lam, K.Y. and Tay, T.E. (1998), "On efficient finite element modeling of composite beams and plates using higher-order theories and an accurate composite beam element", Compos. Struct., 41(2), 159-165. https://doi.org/10.1016/j.ijsolstr.2007.11.005   DOI
50 Shen, G.L., Hu, G. and Liu, B. (2006), Mechanics of Composite Materials, Science and Technology, Beijing, China.
51 Su, X. and Peng, X. (2018), "A 3D finite strain viscoelastic constitutive model for thermally induced shape memory polymers based on energy decomposition", Int. J. Plastic., 110, 166-182. https://doi.org/10.1016/j.ijplas.2018.07.002   DOI
52 Vernon, L.B. and Vernon, H.M. (1941), "Process of Manufacturing Articles of Thermoplastic Synthetic Resins", US Patent issued in March 1941.
53 Wang, Z.D. and Li, Z.F. (2011), "Theoretical analysis of the deformation of SMP sandwich beam in flexure", Arch. Appl. Mech., 81(11), 1667-1678. https://doi.org/10.1007/s00419-011-0510-7   DOI
54 Wang, Z., Li, Z., Xiong, Z. and Wang, L. (2010), "Theoretical studies on microbuckling mode of elastic memory composites", Acta Mechanica Solida Sinica, 23(1), 20-28. https://doi.org/10.1016/S0894-9166(10)60003-1   DOI
55 Han, X.J., Dong, Z.Q., Fan, M.M., Liu, Y., Li, J.H., Wang, Y.F., Yuan, Q.J., Li, B.J. and Zhang, S. (2012), "pH-induced shape-memory polymers", Macromol. Rapid Commun., 33(12), 1055-1060. https://doi.org/10.1002/marc.201200153   DOI
56 Quade, D., Jana, S., Morscher, G., Kannan, M. and McCorkle, L. (2018), "The effects of fiber orientation and adhesives on tensile properties of carbon fiber reinforced polymer matrix composite with embedded nickel-titanium shape memory alloys", Compos. Part A: Appl. Sci. Manuf., 114, 269-277. https://doi.org/10.1016/j.compositesa.2018.08.019   DOI
57 Quitmann, D., Gushterov, N., Sadowski, G., Katzenberg, F. and Tiller, J.C. (2014), "Environmental memory of polymer networks under stress", Adv. Mater., 26(21), 3441-3444. https://doi.org/10.1002/adma.201305698   DOI
58 Reddy, J.N. (2014), An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics, OUP, Oxford, UK.
59 Hassanzadeh-Aghdam, M.K., Ansari, R. and Mahmoodi, M.J. (2019), "Thermo-mechanical properties of shape memory polymer nanocomposites reinforced by carbon nanotubes", Mech. Mater., 129, 80-98. https://doi.org/10.1016/j.mechmat.2018.11.009   DOI
60 He, Y., Li, Y., Liu, Z. and Liew, K.M. (2017), "Buckling analysis and buckling control of thin films on shape memory polymer substrate", Eur. J. Mech.-A/Solids, 66, 356-369. https://doi.org/10.1016/j.euromechsol.2017.08.006   DOI
61 Heuwers, B., Quitmann, D., Hoeher, R., Reinders, F.M., Tiemeyer, S., Sternemann, C., Tolan, M., Katzenberg, F. and Tiller, J.C. (2013), "Stress-Induced Stabilization of Crystals in Shape Memory Natural Rubber", Macromol. Rapid Commun., 34(2), 180-184. https://doi.org/10.1002/marc.201200594   DOI
62 Jani, J.M., Leary, M., Subic, A. and Gibson, M.A. (2014), "A review of shape memory alloy research, applications and opportunities", Mater. Des., 56, 1078-1113. https://doi.org/10.1016/j.matdes.2013.11.084   DOI