• Title/Summary/Keyword: non-specific immune

Search Result 205, Processing Time 0.019 seconds

Identification of novel Leishmania major antigens that elicit IgG2a response in resistant and susceptible mice

  • MOHAMMADI Mohammad Reza;ZEINALI Majid;ARDESTANI Sussan K.;KARIMINIA Amina
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.1 s.137
    • /
    • pp.43-48
    • /
    • 2006
  • Experimental murine models with high, intermediate and low levels of genetically based susceptibility to Leishmania major infection reproduce almost entire spectrum of clinical manifestations of the human disease. There are increasing non-comparative studies on immune responses against isolated antigens of L. major in different murine strains. The aim of the present study was to find out whether there is an antigen that can induce protective immune response in resistant and susceptible murine strains. To do that, crude antigenic extract of procyclic and metacyclic promastigotes of L. major was prepared and subjected to SDS-PAGE electrophoresis. Western-blotting was used to search for antigen(s) capable of raising high antibody level of IgG2a versus IgG1 in the sera of both infected resistant and susceptible strains. Two novel antigens from metacyclic promastigotes of L. major (140 and 152 kDa) were potentially able to induce specific dominant IgG2a responses in BALB/c and C57BU6 mice. The 2 antigens also reacted with IgG antibody of cutaneous leishmaniasis patients. We confirm that 140 and 152 kDa proteins of L. major promastigotes are inducing IgG production in mice and humans.

Immunomodulating Activities of Copolang, a Proteopolysaccharide from Coriolus versicolor in Lewis Lung Carcinoma (LLC) Bearing mice (Lewis Lung Carcinoma(LLC) 이식 생쥐에 있어서 천연운지 단백 다당체(Copolang)의 면역조절활성)

  • 문창규;임철홍;목명수;양경미;한혜승;최재영
    • YAKHAK HOEJI
    • /
    • v.37 no.1
    • /
    • pp.9-17
    • /
    • 1993
  • Immune functions of mice bearing Lewis Lung Carcinoma (LLC) were significantly suppressed when evaluated with mitogen responsiveness, IL-2 production and non-specific suppressor activity. Based on these immunosuppressive characteristics of LLC bearing mice, immunomodulating activates of Copolang were investigated in this model. After 15 days of LLC inoculation, Copolang was intraperitoneally administered for 7 consecutive days with doses of 20 or 200 mg/kg. Immune functions were evaluated 3 days after the final administration of Copolang. The results showed that the growth of LLC solid tumor was not inhibited by Copolang. But, mitogens-induced proliferation, IL-2 production and responsiveness to recombinant IL-2 of splenocytes were significantly augmented by the treatment of Copolang. However suppressor cell activity was not affected by Copolang. These results indicate that Copolang expresses potent immunomodulating activates through the augmentations of IL-2 production and responsiveness to recombinant IL-2, which have been generally known to be suppressed in tumor bearing mice, without affecting the growth of tumor.

  • PDF

Characterization of B- , T- , and NK-like Cells in Nile Tilapia (Oreochromis nilotica)

  • Choi, Sang-Hoon;Oh, Chan-Ho
    • Animal cells and systems
    • /
    • v.4 no.4
    • /
    • pp.341-345
    • /
    • 2000
  • It has been very difficult to develop and evaluate efficient fish vaccines because fish immune cells have not been properly characterized. In this study, we investigated the cell-mediated immunological properties of B- and T-like cells in Nile tilapia (Oreochromis nilotica). Surface immunoglobulin negative ($slg^{-}$) cell population proliferated in response to mammalian T-cell mitogens PHA and Con A, while surface immunoglobulin positive ($slg^{+}$) cells responded to the B-cell mitogen LPS. The slg$^{[-10]}$ cells from hemocyanin (HC)-immunized Tilapia, compared to the non-immunized control, reacted more to PHA than to Con A. Unexpectedly, antigen (Ag)-specific response was observed in both $slg^{-}$ and $slg^{-}$cells. Regardless of HC immunization, whole leukocytes from 8 head kidney of fish showed natural killer (NK)cell activity. Especially, NK cell activity was much higher in slg$^{[-10]}$ cells than in slg$^{+}$cells, indicating the possibility that fish NK cells were not at least associated with slg$^{+}$ cell population and not activated by Ag. Further understanding of functional fish immune cells will help to evaluate and develop effective vaccines for fishes and to monitor the course of therapy In infected fishes.hes.

  • PDF

Quantification of Genetically Modified Soy Proteins in Fresh Soybean Curd by Antigen-coated Plate ELISA (효소면역측정법을 이용한 두부 중의 유전자 재조합 대두단백질 분석)

  • Jung, Mee-Hyun;Bae, Hyung-Ki;Kim, Kyung-Mi;Jang, In-Suk;Ko, Eun-Jung;Bae, Dong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.828-832
    • /
    • 2004
  • Enzyme-linked immune sorbent assay (ELISA) was applied to quantify soy protein in fresh soybean curd (bean curd) produced by combination of genetically modified (GM) and genetically not modified (non-GM) soybeans. Antibodies against 113 and 24 kDa proteins, which appeared only in non-GM bean curd (specific band), and in both non-GM and GM bean curds (non-specific band) based on SDS-PAGE results, were prepared by immunization to rabbit. Through ELISA using either antibody, GM bean curd protein content was determined at dilution rates of $10^{-1}-10^{-6}$. Standard curve showing relationship between ELISA optical density and non-GM protein content was produced using antibody against 113 kDa protein at protein dilution between $10^{-7}\;to\;10^{-6}$, highly antigen content-dependent dilution. Bean curd prepared by random combinations of GM and non-GM soybeans were analyzed by ELISA, and standard curve was produced. Results reveal non-GM protein content of bean curd could be quantified with higher than 93% accuracy.

Comparison of immunogenecities of three beta-nodavirus proteins, capsid protein, non-structural protein B1 and B2 in olive flounder

  • Cha, Seung-Ju;Do, Jeong-Wan;Ko, Myoung-Seok;Kim, Jin-Woo;Park, Jeong-Woo
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.219-228
    • /
    • 2009
  • The genomic and subgenomic RNAs of fish nodavirus encode the four proteins, protein A, capsid protein, non-structural protein B1 and B2. In this study, we describe the immune response of olive flounder Paralichthys olivaceus immunized with live fish nodavirus or recombinant capsid protein, non-structural protein B1 and B2 expressed in E. coli. Nodavirus-infected flounder produced antibodies to capsid protein, B1 and B2 and nodavirus-neutralizing activities were detected in the serum of the nodavirus-infected flounder. The flounder were immunized against the three recombinant proteins of fish nodavirus and the sera from these immunized fishes were assayed for nodavirus-specific antibody by ELISA and a neutralization test. In the immunized flounder, all three recombinant proteins induced the production of similar levels of antibody, but only the antibody to capsid protein significantly neutralized nodavirus. These results indicate that all three nodaviral proteins are immunogenic in flounder, but only the capsid protein can induce neutralizing antibody against nodavirus.

Synthesis of New Uracil-5-Sulfonamide Derivatives and Immuno-Stimulatory Effect of a Chemically Modified Hemolymph of Biomphalaria alexandrina on Schistosoma mansoni Infected Mice

  • Fathalla, O.A.;Haiba, M.E.;Maghraby, A.S.
    • Archives of Pharmacal Research
    • /
    • v.26 no.5
    • /
    • pp.358-366
    • /
    • 2003
  • Some N-p-substituted phenyl uracil-5-sulphonamide derivatives have been synthesized to be evaluated as molluscicides against Biomphalaria alexandrina snails, the intermediate host of Schistosoma mansoni. Schistosoma mansoni infected mice were treated with hemolymph obtained from pre-treated Biomphalaria alexandrina snails with the products 4a, 10a, 10b and 4b or obtained from non-treated snails. The selection of the concentration based on the predetermined dose which caused mortality of less than 50% of snails/24 h. $LC_{50}$ of compounds 4a, 10a, 10b and 4b was 50, 100, 200 and 50 ppm respectively. The result showed that immuno-stimulatory effect of treated hemolymph with compounds 4a, 10a and 4b was related to significant protective effects (44.4, 34.6 and 50.4% reduction in worm burden respectively). In addition, mean total worm burdens were significantly reduced in non treated hemolymph by 33.8%. The effect of hemolymph obtained from treated or non treated snails on S. mansoni adult worms antigens was studied by indirect immunofluorescence technique using chronic mouse sera (CMS). The results indicated that there was a strong reaction with epitopes in gut epithelium, tubercles, teigument and subtegumental musculature of untreated and treated S. mansoni adult worms antigens. Therefore, treatment of hemolymph obtained from pre-treated snails with compounds 4a, 10a, and 4b can stimulate specific immune response and induce protective effects against S. mansoni infection.

Effects of immersion vaccination in different concentration of edwardsiellosis vaccine on olive flounder, Paralichthys olivaceus (다양한 농도의 에드워드 백신액에 대한 넙치, Paralichthys olivaceus의 침지 투여 효과)

  • Gwon, Mun-Gyeong;Bang, Jong-Deuk
    • Journal of fish pathology
    • /
    • v.17 no.3
    • /
    • pp.171-177
    • /
    • 2004
  • This study was performed to investigate the effects of prolonged immersion vaccination in a dilute vaccine on the farmed olive flounder, Pararlichthys olivaceus. Juvenile olive flounders were immersed in the several diluted ($10^0$, $10^{-1}$, $10^{-2}$ and $10^{-3}$) commercial edwardsiellosis bacterins (5㎎/ℓ) for 2min (short immersion, SI) and 24 h (prolonged immersion, PI). After immunization, fish were analyzed to investigate on non-specific (serum lysozyme and bactericidal activity), specific immune responses (antibody agglutinin titer) and resistances against Edwardsiella tarda infection. The PI of the commercial vaccine diluted with $10^{-1}$ and $10^{-2}$ showed better results over the untreated control in terms of serum lysozyme, bactericidal activities and resistance against E. tarda infection. These results suggest that the prolonged treatments of the diluted vaccine might be a new approach improving the vaccination potential.

Effects of enzymatically hydrolyzed fish by-products in diet of juvenile rainbow trout (Oncorhynchus mykiss)

  • Bae, Jinho;Azad, Abul Kalam;Won, Seonghun;Hamidoghli, Ali;Seong, Minji;Bai, Sungchul C.
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.1
    • /
    • pp.1.1-1.8
    • /
    • 2019
  • Five experimental diets were formulated to evaluate the effects of dietary enzymatically hydrolyzed tuna by-product on growth, non-specific immune responses, and hematology of juvenile rainbow trout (Oncorhynchus mykiss). A basal diet with 50% of fishmeal was used as control (CON) and four other diets replaced 12.5% ($TBB_{12.5}$), 25% ($TBB_{25}$), 37.5% ($TBB_{37.5}$), and 50% ($TBB_{50}$) of fish meal in the CON diet. Juvenile rainbow trout ($4.87{\pm}0.05g$) were randomly distributed into 15 tanks (50 L) and fed 3-4% of wet body weight two times a day. At the end of 7 weeks of feeding trial, weight gain, specific growth rate, feed efficiency, and protein efficiency ratio of fish fed CON diet were significantly higher than those of fish fed $TB_{50}$ diet (P < 0.05). But there were no significant differences among fish fed CON, $TBB_{12.5}$, $TBB_{25}$, and $TBB_{37.5}$ diets (P > 0.05). There were no significant differences in GPT levels among fish fed CON, $TBB_{12.5}$, $TBB_{25}$, and $TBB_{37.5}$ diets. Also, there were no significant differences in lysozyme, superoxide dismutase, glucose, and total protein levels in all experimental diet (P > 0.05). The broken-line analysis indicated that the minimum dietary level of enzymatically hydrolyzed tuna by-product to replace fishmeal could be 29.7% in rainbow trout. These results indicated that the optimum level of dietary enzymatically hydrolyzed tuna by-product could replace greater than 29.7% but less than 37.5% of fishmeal in juvenile rainbow trout diet.

Chikungunya Virus nsP2 Impairs MDA5/RIG-I-Mediated Induction of NF-κB Promoter Activation: A Potential Target for Virus-Specific Therapeutics

  • Bae, Sojung;Lee, Jeong Yoon;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1801-1809
    • /
    • 2020
  • Chikungunya virus (CHIKV) was first identified in 1952 as a causative agent of outbreaks. CHIKV is transmitted by two mosquito species, Aedes aegypti and A. albopictus. Symptoms after CHIKV infection in human are typically fever and joint pain, but can also include headache, muscle pain, joint swelling, polyarthralgia, and rash. CHIKV is an enveloped single-stranded, positive-sense RNA virus with a diameter of approximately 70 nm. The pathogenesis of CHIKV infection and the mechanism by which the virus evades the innate immune system remain poorly understood. Moreover, little is known about the roles of CHIKV-encoded genes in the viral evasion of host immune responses, especially type I interferon (IFN) responses. Therefore, in the present study, we screened CHIKV-encoded genes for their regulatory effect on the activation of nuclear factor kappa B (NF-κB), a critical transcription factor for the optimal activation of IFN-β. Among others, non-structural protein 2 (nsP2) strongly inhibited melanoma differentiation-associated protein 5 (MDA5)-mediated induction of the NF-κB pathway in a dose-dependent manner. Elucidation of the detailed mechanisms of nsP2-mediated inhibition of the MDA5/RIG-I signaling pathway is anticipated to contribute to the development of virus-specific therapeutics against CHIKV infection.

Multi-epitope vaccine against drug-resistant strains of Mycobacterium tuberculosis: a proteome-wide subtraction and immunoinformatics approach

  • Md Tahsin Khan;Araf Mahmud;Md. Muzahidul Islam;Mst. Sayedatun Nessa Sumaia;Zeaur Rahim;Kamrul Islam;Asif Iqbal
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.42.1-42.23
    • /
    • 2023
  • Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the most deadly infections in humans. The emergence of multidrug-resistant and extensively drug-resistant Mtb strains presents a global challenge. Mtb has shown resistance to many frontline antibiotics, including rifampicin, kanamycin, isoniazid, and capreomycin. The only licensed vaccine, Bacille Calmette-Guerin, does not efficiently protect against adult pulmonary tuberculosis. Therefore, it is urgently necessary to develop new vaccines to prevent infections caused by these strains. We used a subtractive proteomics approach on 23 virulent Mtb strains and identified a conserved membrane protein (MmpL4, NP_214964.1) as both a potential drug target and vaccine candidate. MmpL4 is a non-homologous essential protein in the host and is involved in the pathogen-specific pathway. Furthermore, MmpL4 shows no homology with anti-targets and has limited homology to human gut microflora, potentially reducing the likelihood of adverse effects and cross-reactivity if therapeutics specific to this protein are developed. Subsequently, we constructed a highly soluble, safe, antigenic, and stable multi-subunit vaccine from the MmpL4 protein using immunoinformatics. Molecular dynamics simulations revealed the stability of the vaccine-bound Tolllike receptor-4 complex on a nanosecond scale, and immune simulations indicated strong primary and secondary immune responses in the host. Therefore, our study identifies a new target that could expedite the design of effective therapeutics, and the designed vaccine should be validated. Future directions include an extensive molecular interaction analysis, in silico cloning, wet-lab experiments, and evaluation and comparison of the designed candidate as both a DNA vaccine and protein vaccine.