• Title/Summary/Keyword: non-enzymatic activity

Search Result 125, Processing Time 0.024 seconds

Inhibitory Effects of Human Glutamate Dehydrogenase Isozymes by Antipsychotic Drugs for Schizophrenia (정신분열증 치료제에 의한 사람 글루탐산염 탈수소효소 동종효소의 억제효과)

  • Nam, A-Reum;Kim, In-Sik;Yang, Seung-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.152-158
    • /
    • 2016
  • Glutamate is one of the major excitatory neurotransmitters in the central nervous system of vertebrates. Human GDH (hGDH) is the enzyme that regulates the glutamate metabolism and its expression is higher in the brains of schizophrenia patients than in normal subjects. This study examined the changes in the hGDH enzymatic activity caused by antipsychotic drugs (haloperidol, risperidone, (${\pm}$)-sulpride, chlopromazine hydrochloride, melperone, (${\pm}$)butaclamol, domperidone, clozapine) related to schizophrenia. First of all, hGDH isozymes (hGDH1, hGDH2) were synthesized by genetic recombination. As a result of the enzyme assay, haloperidol, (${\pm}$)-sulpride, melperone and clozapine had an inhibitory effect on the hGDH isozymes. In addition, haloperidol showed a non-competitive inhibition against the substrate, 2-oxoglutarate. In contrast, it showed an uncompetitive inhibition against another substrate, NADH. The inhibitory effect of haloperidol on hGDH2 was abolished by the presence of L-leucine, an allosteric effector of hGDH, but by not other antipsychotic drugs. These results revealed the inhibition of enzyme activity by psychotropic drugs in hGDH isoenzymes (hGDH1 and hGDH2) and the possibility that haloperidol may be used to regulate the GDH activity and glutamate concentration in the central nervous system.

Effects of Cooking Methods with Different Heat Intensities on Antioxidant Activity and Physicochemical Properties of Garlic (열처리 조리방법이 마늘의 항산화 활성과 이화학적 특성에 미치는 영향)

  • Jo, Hyeri;Surh, Jeonghee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1784-1791
    • /
    • 2016
  • Garlic was subjected to eight different cooking methods (raw, boiling, steaming, microwave cooking, deep-frying, oven-roasting, pan-frying, and pan-roasting) utilized for typical Korean cuisine. Garlic was analyzed for antioxidant activities and physicochemical properties to elucidate effects of cooking. Garlic cooked at higher temperatures showed significantly lower lightness and higher yellowness (P<0.001). In particular, deep-frying and pan-frying resulted in lowest lightness and soluble solid content, indicating that non-enzymatic browning reactions were more facilitated. Compared with raw garlic, all cooked garlic tended to have lower thiosulfinates, presumably due to decomposition into polysulfides and/or leaching into cooking water and oil. Microwave cooking retained organic acids, total reducing capacity, and flavonoids, which can be attributed to low microwave intensity and shorter cooking time under which heat-labile bioactive components might have undergone less decomposition. Cooking significantly increased metal-chelating activity (P<0.001). In addition, oven-roasting and pan-roasting enhanced total reducing capacity and flavonoid content, indicating that thermal treatments increased the extractability of bioactive components from garlic. However, boiling, deep-frying, and pan-frying, in which garlic is in contact directly with a hot cooking medium, reduced antioxidant activities. Deep-frying resulted in largest reduction in DPPH radical scavenging activity of garlic, which correlated well with reduction of total reducing capacity and flavonoid content. The results show that the antioxidant activity of garlic could be affected by cooking method, particularly heat intensity and/or direct contact of the cooking medium.

Antioxidant Activity and Identification of Lunasin Peptide as an Anticancer Peptide on Growing Period and Parts in Pepper (생육시기 및 부위별 고추의 항산화력 및 항암 Lunasin peptide의 동정)

  • Kwon Ki Soo;Park Jae Ho;Kim Dae Seop;Jeong Jin Boo;Sim Young Eun;Kim Mi Suk;Lee Hee Kyung;Chung Gyu Young;Jeong Hyung Jin
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.528-535
    • /
    • 2005
  • The non-enzymatic anti-oxidants and lunasin peptide from the extracts of the pepper were examined in order to utilize the discovery in natural products as cancer chemopreventive agents. The DPPH (1,1-diphenyl-2-picryl-hydrazyl) free radical scavenging activity on the fruit parts of the pepper was higher than that of the seed, but the difference was low. The Inhibition activity of xanthine/ xanthine oxidase in extracts of the seed was higher than that of the fruit and that of the seed on 20 days after flowering was the highest at the growing period. These were identified as fatty acids and phenolic compounds such as 1-eicosanol, palmitic acid, linoleic acid, linolenic acid and benzonitrile. The contents of fatty acids and phenolic compounds increased according to the time passing at the growing period. Peroxidase (POD) activity of the fruit at middle stage was high than that of other growing stages and that of the seed was the highest at later growing period. Though superoxide dismutase (SOD) activities in fruit were hish by passage of Slowing stage, the activity in seed was low. Lunasin was searched from seeds of the peppers by coomassie blue staining and western blot among them and we just found lunasin peptide from extracted protein of the pepper by western blot. In addition, we observed the contents of lunasin after flowering and confirmed to appear the lunasin at 35 days after flowering. We confirmed that lunasin is complex protein of maturing seeds. 100nM lunasin peptide in pepper showed inhibition effect on colony formation in $2\~12$ cells.

Psychobiotic Effects of Multi-Strain Probiotics Originated from Thai Fermented Foods in a Rat Model

  • Luang-In, Vijitra;Katisart, Teeraporn;Konsue, Ampa;Nudmamud-Thanoi, Sutisa;Narbad, Arjan;Saengha, Worachot;Wangkahart, Eakapol;Pumriw, Supaporn;Samappito, Wannee;Ma, Nyuk Ling
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.1014-1032
    • /
    • 2020
  • This work aimed to investigate the psychobiotic effects of six bacterial strains on the mind and behavior of male Wistar rats. The probiotic (PRO) group (n=7) were rats pre-treated with antibiotics for 7 days followed by 14-day probiotic administration, antibiotics (ANT) group (n=7) were rats treated with antibiotics for 21 days without probiotics. The control (CON) group (n=7) were rats that received sham treatment for 21 days. The six bacterial strains with probiotic properties were mostly isolated from Thai fermented foods; Pedicoccus pentosaceus WS11, Lactobacillus plantarum SK321, L. fermentum SK324, L. brevis TRBC 3003, Bifidobacterium adolescentis TBRC 7154 and Lactococcus lactis subsp. lactis TBRC 375. The probiotics were freeze-dried into powder (6×109 CFU/5 g) and administered to the PRO group via oral gavage. Behavioral tests were performed. The PRO group displayed significantly reduced anxiety level and increased locomotor function using a marble burying test and open field test, respectively and significantly improved short-term memory performance using a novel object recognition test. Antibiotics significantly reduced microbial counts in rat feces in the ANT group by 100 fold compared to the PRO group. Probiotics significantly enhanced antioxidant enzymatic and non-enzymatic defenses in rat brains as assessed using catalase activity and ferric reducing antioxidant power assay, respectively. Probiotics also showed neuroprotective effects with less pyknotic cells and lower frequency of vacuolization in cerebral cortex. This multi-strain probiotic formulation from Thai fermented foods may offer a potential to develop psychobiotic-rich functional foods to modulate human mind and behaviors.

Inhibitory Effect of Hizikia fusiformis Solvent-Partitioned Fractions on Invasion and MMP Activity of HT1080 Human Fibrosarcoma Cells

  • Lee, Seul-Gi;Karadeniz, Fatih;Oh, Jung Hwan;Yu, Ga Hyun;Kong, Chang-Suk
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.3
    • /
    • pp.184-190
    • /
    • 2017
  • Matrix metalloproteinases (MMPs) are endopeptidases that take significant roles in extracellular matrix degradation and therefore linked to several complications such as metastasis of cancer progression, oxidative stress, and hepatic fibrosis. Hizikia fusiformis, a brown algae, was reported to possess bioactivities, including but not limited to, antiviral, antimicrobial, and anti-inflammatory partly due to bioactive polysaccharide contents. In this study, the potential of H. fusiformis against cancer cell invasion was evaluated through the MMP inhibitory effect in HT1080 fibrosarcoma cells in vitro. H. fusiformis crude extract was fractionated with organic solvents, $H_2O$, n-BuOH, 85% aqueous MeOH, and n-hexane (n-Hex). The non-toxicity of the fractions was confirmed by MTT assay. All fractions inhibited the enzymatic activities of MMP-2 and MMP-9 according to the gelatin zymography assay. Cell migration was also significantly inhibited by the n-Hex fraction. In addition, both gene and protein expressions of MMP-2 and -9, and tissue inhibitor of MMPs (TIMPs) were evaluated by reverse transcription-polymerase chain reaction and Western blotting, respectively. The fractions suppressed the mRNA and protein levels of MMP-2, MMP-9 while elevating the TIMP-1 and TIMP-2, with the $H_2O$ fraction being the least effective while n-Hex fraction the most. Collectively, the n-Hex fraction from brown algae H. fusiformis could be a potential inhibitor of MMPs, suggesting the presence of various derivatives of polysaccharides in high amounts.

Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct

  • Lim, Erh-Hsuin;Sardinha, Jose Paulo;Myers, Simon;Stevens, Molly
    • Archives of Plastic Surgery
    • /
    • v.40 no.6
    • /
    • pp.676-686
    • /
    • 2013
  • Background To overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-${\beta}$1 (LTGF) into an electrospun poly(L-lactide) scaffold. Methods The electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats. Results Chemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen. Conclusions We have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.

Biological Constituents of Aged Garlic Extract as Biomarker (숙성마늘 extract 의 biomarker로서 생리활성 성분)

  • Yang, Seung-Taek
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.138-146
    • /
    • 2009
  • Garlic (Allium sativum) are an agronomically important genus because of their sulfur flavour components. The majority of the volatiles flavour principles are generated through the enzymatic hydrolysis of the non-volatile organosulfur compounds. However, these compounds may be possible sources of new novel bioacuve and therapeutic principles. Garlic has strong antioxidant activity, and epidemiological studies support the fad that diets rich of garlic may prevent some of the chronic diseases. The health cares of garlic likely arise from a wide variety of components, which may work synergistically. The chemical changes of garlic composition makes it plausible that a variation in processing can lead to acquisition of differential chemical compositions of garlic products. Especially highly unstable allicin can easily disappear during processing and are quickly transformed into a various organosulfur compounds. Various supplements of garlic, particularly aged garlic extract (AGE), are known to possess a promising antioxidant potential and are effective in prevention of chronic diseases because of the bioactive constituents. Although all of active ingredients of AGE are not elucidated, water-soluble components of AGE, including S-allylcysteine, S-allylmercaptane, steroid saponins, tetrahydro-${\beta}$-carboline derivatives, and fructosyl-arginine, appears to be associated with the pharmacological effects of AGE. Consequently, the allicin free garlic components such as S-allylcysteine, S-allylmercaptane, steroid saponins, tetrahydro-${\beta}$-carboline derivatives, and fructosyl-arginine can be applicable to standardization of the quality of commercial garlic products. This review provides an insight into garlic's biomarkers and presents evidence that they may either prevent or delay chronic disease associated with aging.

Interaction of the Lysophospholipase PNPLA7 with Lipid Droplets through the Catalytic Region

  • Chang, Pingan;Sun, Tengteng;Heier, Christoph;Gao, Hao;Xu, Hongmei;Huang, Feifei
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.286-297
    • /
    • 2020
  • Mammalian patatin-like phospholipase domain containing proteins (PNPLAs) play critical roles in triglyceride hydrolysis, phospholipids metabolism, and lipid droplet (LD) homeostasis. PNPLA7 is a lysophosphatidylcholine hydrolase anchored on the endoplasmic reticulum which associates with LDs through its catalytic region (PNPLA7-C) in response to increased cyclic nucleotide levels. However, the interaction of PNPLA7 with LDs through its catalytic region is unknown. Herein, we demonstrate that PNPLA7-C localizes to the mature LDs ex vivo and also colocalizes with pre-existing LDs. Localization of PNPLA7-C with LDs induces LDs clustering via non-enzymatic intermolecular associations, while PNPLA7 alone does not induce LD clustering. Residues 742-1016 contains four putative transmembrane domains which act as a LD targeting motif and are required for the localization of PNPLA7-C to LDs. Furthermore, the N-terminal flanking region of the LD targeting motif, residues 681-741, contributes to the LD targeting, whereas the C-terminal flanking region (1169-1326) has an anti-LD targeting effect. Interestingly, the LD targeting motif does not exhibit lysophosphatidylcholine hydrolase activity even though it associates with LDs phospholipid membranes. These findings characterize the specific functional domains of PNPLA7 mediating subcellular positioning and interactions with LDs, as wells as providing critical insights into the structure of this evolutionarily conserved phospholipid-metabolizing enzyme family.

Biochemical, Hematological Effects and Complications of Pseudosynanceia Melanostigma Envenoming

  • Babaie, Mahdi;Zolfagharian, Hossein;Zolfaghari, Mohammad;Jamili, Shahla
    • Journal of Pharmacopuncture
    • /
    • v.22 no.3
    • /
    • pp.140-146
    • /
    • 2019
  • Objectives: Venomous fishes have different pharmacological effects and are useful. Among the venomous fish, stonefishes; especially Pseudosynanceia melanostigma has various pharmacological effects on the nervous, muscular and cardiovascular system of humans. In this study, toxicological characteristics, some blood effects, pharmacological and enzymatic properties of Pseudosynanceia melanostigma venom was investigated. Methods: Crude venom purified by using gel filtration chromatography and the molecular weights of the venom and its fractions were estimated. The approximate LD values of this venom were determinedand the effects of LD50 dose on the blood of rabbits were studied. Hemolytic and Hemorrhagic activity of the venom sample was determined. In this case coagulation tests were performed. Results: The LD50 of the Pseudosynanceia melanostigma crude venom was also determined to be $194.54{\mu}g/mouse$. The effect of two doses of LD50 showed a non-significant differences decrease in RBCs and MCV. In other cases, the results showed significant differences in WBC, Plt, Hb, MCH, MCHC and HCT; also it's showed a significant decrease. WBC count showed a significant increase with two doses of LD50 groups. The prothrombin time and partial prothrombin time were increased after venom treatment. As well as bleeding and clotting time were increased. According to the results, a minimum dose for Haemorrhagic effect $40{\mu}g$ was obtained. Conclusion: Venom of Pseudosynanceia melanostigma has inhibitory effect on platelet aggregation that can be used to design and develop of anticoagulant drugs.

Wheat phytase can alleviate the cellular toxic and inflammatory effects of lipopolysaccharide

  • An, Jeongmin;Cho, Jaiesoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.114-124
    • /
    • 2021
  • The objective of this study was to characterize the enzymatic hydrolysis of lipopolysaccharide (LPS) by wheat phytase and to investigate the effects of wheat phytase-treated LPS on in vitro toxicity, cell viability and release of a pro-inflammatory cytokine, interleukin (IL)-8 by target cells compared with the intact LPS. The phosphatase activity of wheat phytase towards LPS was investigated in the presence or absence of inhibitors such as L-phenylalanine and L-homoarginine. In vitro toxicity of LPS hydrolyzed with wheat phytase in comparison to intact LPS was assessed. Cell viability in human aortic endothelial (HAE) cells exposed to LPS treated with wheat phytase in comparison to intact LPS was measured. The release of IL-8 in human intestinal epithelial cell line, HT-29 cells applied to LPS treated with wheat phytase in comparison to intact LPS was assayed. Wheat phytase hydrolyzed LPS, resulting in a significant release of inorganic phosphate for 1 h (p < 0.05). Furthermore, the degradation of LPS by wheat phytase was nearly unaffected by the addition of L-phenylalanine, the inhibitor of tissue-specific alkaline phosphatase or L-homoarginine, the inhibitor of tissue-non-specific alkaline phosphatase. Wheat phytase effectively reduced the in vitro toxicity of LPS, resulting in a retention of 63% and 54% of its initial toxicity after 1-3 h of the enzyme reaction, respectively (p < 0.05). Intact LPS decreased the cell viability of HAE cells. However, LPS dephosphorylated by wheat phytase counteracted the inhibitory effect on cell viability. LPS treated with wheat phytase decreased IL-8 secretion from intestinal epithelial cell line, HT-29 cell to 14% (p < 0.05) when compared with intact LPS. In conclusion, wheat phytase is a potential therapeutic candidate and prophylactic agent for control of infections induced by pathogenic Gram-negative bacteria and associated LPS-mediated inflammatory diseases in animal husbandry.