Browse > Article
http://dx.doi.org/10.14348/molcells.2020.2283

Interaction of the Lysophospholipase PNPLA7 with Lipid Droplets through the Catalytic Region  

Chang, Pingan (Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications)
Sun, Tengteng (Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications)
Heier, Christoph (Institute of Molecular Biosciences, University of Graz)
Gao, Hao (Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications)
Xu, Hongmei (Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications)
Huang, Feifei (Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications)
Abstract
Mammalian patatin-like phospholipase domain containing proteins (PNPLAs) play critical roles in triglyceride hydrolysis, phospholipids metabolism, and lipid droplet (LD) homeostasis. PNPLA7 is a lysophosphatidylcholine hydrolase anchored on the endoplasmic reticulum which associates with LDs through its catalytic region (PNPLA7-C) in response to increased cyclic nucleotide levels. However, the interaction of PNPLA7 with LDs through its catalytic region is unknown. Herein, we demonstrate that PNPLA7-C localizes to the mature LDs ex vivo and also colocalizes with pre-existing LDs. Localization of PNPLA7-C with LDs induces LDs clustering via non-enzymatic intermolecular associations, while PNPLA7 alone does not induce LD clustering. Residues 742-1016 contains four putative transmembrane domains which act as a LD targeting motif and are required for the localization of PNPLA7-C to LDs. Furthermore, the N-terminal flanking region of the LD targeting motif, residues 681-741, contributes to the LD targeting, whereas the C-terminal flanking region (1169-1326) has an anti-LD targeting effect. Interestingly, the LD targeting motif does not exhibit lysophosphatidylcholine hydrolase activity even though it associates with LDs phospholipid membranes. These findings characterize the specific functional domains of PNPLA7 mediating subcellular positioning and interactions with LDs, as wells as providing critical insights into the structure of this evolutionarily conserved phospholipid-metabolizing enzyme family.
Keywords
lipid droplet; lysophosphatidylcholine hydrolase; PNPLA7; transmembrane domain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Eilers, M., Shekar, S.C., Shieh, T., Smith, S.O., and Fleming, P.J. (2000). Internal packing of helical membrane proteins. Proc. Natl. Acad. Sci. U. S. A. 97, 5796-5801.   DOI
2 Farese, R.V., Jr. and Walther, T.C. (2009). Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139, 855-860.   DOI
3 Fujimoto, T., Ohsaki, Y., Cheng, J., Suzuki, M., and Shinohara, Y. (2008). Lipid droplets: a classic organelle with new outfits. Histochem. Cell Biol. 130, 263-279.   DOI
4 Fujimoto, T. and Parton, R.G. (2011). Not just fat: the structure and function of the lipid droplet. Cold Spring Harb. Perspect. Biol. 3, a004838.   DOI
5 Heier, C., Kien, B., Huang, F., Eichmann T.O., Xie, H., Zechner, R., and Chang, P.A. (2017). The phospholipase PNPLA7 functions as a lysophosphatidylcholine hydrolase and interacts with lipid droplets through its catalytic domain. J. Biol. Chem. 292, 19087-19098.   DOI
6 Hirokawa, T., Boon-Chieng, S., and Mitaku, S. (1998). SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378-379.   DOI
7 Hofmann, K. and Stoffel, W. (1993). TMbase - a database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 374, 166.
8 Hristova, K., Wimley, W.C., Mishra, V.K., Anantharamiah, G.M., Segrest, J.P., and White, S.H. (2009). An amphipathic alpha-helix at a membrane interface: a structural study using a novel X-ray diffraction method. J. Mol. Biol. 290, 99-117.   DOI
9 Huang, F.F., Chang, P.A., Sun, L.X., Qin, W.Z., Han, L.P., and Chen, R. (2016). The destruction box is involved in the degradation of the NTE family proteins by the proteasome. Mol. Biol. Rep. 43, 1285-1292.   DOI
10 Kassan, A., Herms, A., Fernandez-Vidal, A., Bosch, M., Schieber, N.L., Reddy, B.J., Fajardo, A., Gelabert-Baldrich, M., Tebar, F., Enrich, C., et al. (2013). Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J. Cell Biol. 203, 985-1001.   DOI
11 Kien, B., Grond, S., Haemmerle, G., Lass, A., Eichmann, T.O., and Radner, F.P.W. (2018). ABHD5 stimulates PNPLA1-mediated ${\omega}$-O-acylceramide biosynthesis essential for a functional skin permeability barrier. J. Lipid Res. 59, 2360-2367.   DOI
12 Kienesberger, P.C., Lass, A., Preiss-Landl, K., Wolinski, H., Kohlwein, S.D., Zimmermann, R., and Zechner, R. (2008). Identification of an insulin-regulated lysophospholipase with homology to neuropathy target esterase. J. Biol. Chem. 283, 5908-5917.   DOI
13 Kienesberger, P.C., Oberer, M., Lass, A., and Zechner, R. (2009). Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. J. Lipid Res. 50 Suppl, S63-S68.   DOI
14 Kory, N., Farese, R.V., Jr., and Walther, T.C. (2016). Targeting fat: mechanisms of protein localization to lipid droplets. Trends Cell Biol. 26, 535-546.   DOI
15 Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567-580.   DOI
16 Ostermeyer, A.G., Ramcharan, L.T., Zeng, Y., Lublin, D.M., and Brown, D.A. (2004). Role of the hydrophobic domain in targeting caveolin-1 to lipid droplets. J. Cell Biol. 164, 69-78.   DOI
17 Li, Y., Dinsdale, D., and Glynn, P. (2003). Protein domains, catalytic activity, and subcellular distribution of neuropathy target esterase in Mammalian cells. J. Biol. Chem. 278, 8820-8825.   DOI
18 Lush, M.J., Li, Y., Read, D.J., Willis, A.C., and Glynn, P. (1998). Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man. Biochem. J. 332(Pt 1), 1-4.   DOI
19 Murugesan, S., Goldberg, E.B., Dou, E., and Brown, W.J. (2013). Identification of diverse lipid droplet targeting motifs in the PNPLA family of triglyceride lipases. PLoS One 8, e64950.   DOI
20 Ohno, Y., Nara, A., Nakamichi, S., and Kihara, A. (2018). Molecular mechanism of the ichthyosis pathology of Chanarin-Dorfman syndrome: Stimulation of PNPLA1-catalyzed ${\omega}$-O-acylceramide production by ABHD5. J. Dermatol. Sci. 92, 245-253.   DOI
21 Papadopoulos, C., Orso, G., Mancuso, G., Herholz, M., Gumeni, S., Tadepalle, N., Jungst, C., Tzschichholz, A., Schauss, A., Honing, S., et al. (2015). Spastin binds to lipid droplets and affects lipid metabolism. PLoS Genet. 11, e1005149.   DOI
22 Pichery, M., Huchenq, A., Sandhoff, R., Severino-Freire, M., Zaafouri, S., Opalka, L., Levade, T., Soldan, V., Bertrand-Michel, J., Lhuillier, E., et al. (2017). PNPLA1 defects in patients with autosomal recessive congenital ichthyosis and KO mice sustain PNPLA1 irreplaceable function in epidermal omega-O-acylceramide synthesis and skin permeability barrier. Hum. Mol. Genet. 26, 1787-1800.   DOI
23 Quistad, G.B., Barlow, C., Winrow, C.J., Sparks, S.E., and Casida, J.E. (2003). Evidence that mouse brain neuropathy target esterase is a lysophospholipase. Proc. Natl. Acad. Sci. U. S. A. 100, 7983-7987.   DOI
24 van Tienhoven, M., Atkins, J., Li, Y., and Glynn, P. (2002). Human neuropathy target esterase catalyzes hydrolysis of membrane lipids. J. Biol. Chem. 277, 20942-20948.   DOI
25 Read, D.J., Li, Y., Chao, M.V., Cavanagh, J.B., and Glynn, P. (2009). Neuropathy target esterase is required for adult vertebrate axon maintenance. J. Neurosci. 29, 11594-11600.   DOI
26 Reue, K. (2011). Lipid droplet storage and metabolism: from yeast to man. J. Lipid Res. 52, 1865-1868.   DOI
27 Sztalryd, C. and Brasaemle, D.L. (2017). The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 1221-1232.   DOI
28 Tusnady, G.E. and Simon, I. (2001). The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849-850.   DOI
29 Tzen, J.T., Lie, G.C., and Huang, A.H. (1992). Characterization of the charged components and their topology on the surface of plant seed oil bodies. J. Biol. Chem. 267, 15626-15634.   DOI
30 Wijeyesakere, S.J., Richardson, R.J., and Stuckey, J.A. (2007). Modeling the tertiary structure of the patatin domain of neuropathy target esterase. Protein J. 26, 165-172.   DOI
31 Wilson, P.A., Gardner, S.D., Lambie, N.M., Commans, S.A., and Crowther, D.J. (2006). Characterization of the human patatin-like phospholipase family. J. Lipid Res. 47, 1940-1949.   DOI
32 Barneda, D. and Christian, M. (2017). Lipid droplet growth: regulation of a dynamic organelle. Curr. Opin. Cell Biol. 47, 9-15.   DOI
33 Zaccheo, O., Dinsdale, D., Meacock, P.A., and Glynn, P. (2004). Neuropathy target esterase and its yeast homologue degrade phosphatidylcholine to glycerophosphocholine in living cells. J. Biol. Chem. 279, 24024-24033.   DOI
34 Zhang, C. and Liu, P. (2019). The new face of the lipid droplet: lipid droplet proteins. Proteomics 19, e1700223.   DOI
35 Seelig, J. (2004). Thermodynamics of lipid-peptide interactions. Biochim. Biophys. Acta 1666, 40-50.   DOI
36 Akassoglou, K., Malester, B., Xu, J., Tessarollo, L., Rosenbluth, J., and Chao, M.V. (2004). Brain-specific deletion of neuropathy target esterase/swisscheese results in neurodegeneration. Proc. Natl. Acad. Sci. U. S. A. 101, 5075-5080.   DOI
37 Atkins, J. and Glynn, P. (2000). Membrane association of and critical residues in the catalytic domain of human neuropathy target esterase. J. Biol. Chem. 275, 24477-24483.   DOI
38 Brasaemle, D.L. and Wolins, N.E. (2016). Isolation of lipid droplets from cells by density gradient centrifugation. Curr. Protoc. Cell Biol. 72, 3.15.1-3.15.13.
39 Chang, P.A., Wang, Z.X., Long, D.X., Qin, W.Z., Wei, C.Y., and Wu, Y.J. (2012). Identification of two novel splicing variants of murine NTE-related esterase. Gene 497, 164-171.   DOI
40 Claros, M.G. and von Heijne, G. (1994). TopPred II: an improved software for membrane protein structure predictions. Comput. Appl. Biosci. 10, 685-686.