DOI QR코드

DOI QR Code

Interaction of the Lysophospholipase PNPLA7 with Lipid Droplets through the Catalytic Region

  • Chang, Pingan (Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications) ;
  • Sun, Tengteng (Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications) ;
  • Heier, Christoph (Institute of Molecular Biosciences, University of Graz) ;
  • Gao, Hao (Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications) ;
  • Xu, Hongmei (Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications) ;
  • Huang, Feifei (Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications)
  • 투고 : 2019.11.20
  • 심사 : 2020.02.10
  • 발행 : 2020.03.31

초록

Mammalian patatin-like phospholipase domain containing proteins (PNPLAs) play critical roles in triglyceride hydrolysis, phospholipids metabolism, and lipid droplet (LD) homeostasis. PNPLA7 is a lysophosphatidylcholine hydrolase anchored on the endoplasmic reticulum which associates with LDs through its catalytic region (PNPLA7-C) in response to increased cyclic nucleotide levels. However, the interaction of PNPLA7 with LDs through its catalytic region is unknown. Herein, we demonstrate that PNPLA7-C localizes to the mature LDs ex vivo and also colocalizes with pre-existing LDs. Localization of PNPLA7-C with LDs induces LDs clustering via non-enzymatic intermolecular associations, while PNPLA7 alone does not induce LD clustering. Residues 742-1016 contains four putative transmembrane domains which act as a LD targeting motif and are required for the localization of PNPLA7-C to LDs. Furthermore, the N-terminal flanking region of the LD targeting motif, residues 681-741, contributes to the LD targeting, whereas the C-terminal flanking region (1169-1326) has an anti-LD targeting effect. Interestingly, the LD targeting motif does not exhibit lysophosphatidylcholine hydrolase activity even though it associates with LDs phospholipid membranes. These findings characterize the specific functional domains of PNPLA7 mediating subcellular positioning and interactions with LDs, as wells as providing critical insights into the structure of this evolutionarily conserved phospholipid-metabolizing enzyme family.

키워드

참고문헌

  1. Akassoglou, K., Malester, B., Xu, J., Tessarollo, L., Rosenbluth, J., and Chao, M.V. (2004). Brain-specific deletion of neuropathy target esterase/swisscheese results in neurodegeneration. Proc. Natl. Acad. Sci. U. S. A. 101, 5075-5080. https://doi.org/10.1073/pnas.0401030101
  2. Atkins, J. and Glynn, P. (2000). Membrane association of and critical residues in the catalytic domain of human neuropathy target esterase. J. Biol. Chem. 275, 24477-24483. https://doi.org/10.1074/jbc.M002921200
  3. Barneda, D. and Christian, M. (2017). Lipid droplet growth: regulation of a dynamic organelle. Curr. Opin. Cell Biol. 47, 9-15. https://doi.org/10.1016/j.ceb.2017.02.002
  4. Brasaemle, D.L. and Wolins, N.E. (2016). Isolation of lipid droplets from cells by density gradient centrifugation. Curr. Protoc. Cell Biol. 72, 3.15.1-3.15.13.
  5. Chang, P.A., Wang, Z.X., Long, D.X., Qin, W.Z., Wei, C.Y., and Wu, Y.J. (2012). Identification of two novel splicing variants of murine NTE-related esterase. Gene 497, 164-171. https://doi.org/10.1016/j.gene.2012.01.064
  6. Claros, M.G. and von Heijne, G. (1994). TopPred II: an improved software for membrane protein structure predictions. Comput. Appl. Biosci. 10, 685-686.
  7. Eilers, M., Shekar, S.C., Shieh, T., Smith, S.O., and Fleming, P.J. (2000). Internal packing of helical membrane proteins. Proc. Natl. Acad. Sci. U. S. A. 97, 5796-5801. https://doi.org/10.1073/pnas.97.11.5796
  8. Farese, R.V., Jr. and Walther, T.C. (2009). Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139, 855-860. https://doi.org/10.1016/j.cell.2009.11.005
  9. Fujimoto, T., Ohsaki, Y., Cheng, J., Suzuki, M., and Shinohara, Y. (2008). Lipid droplets: a classic organelle with new outfits. Histochem. Cell Biol. 130, 263-279. https://doi.org/10.1007/s00418-008-0449-0
  10. Fujimoto, T. and Parton, R.G. (2011). Not just fat: the structure and function of the lipid droplet. Cold Spring Harb. Perspect. Biol. 3, a004838. https://doi.org/10.1101/cshperspect.a004838
  11. Heier, C., Kien, B., Huang, F., Eichmann T.O., Xie, H., Zechner, R., and Chang, P.A. (2017). The phospholipase PNPLA7 functions as a lysophosphatidylcholine hydrolase and interacts with lipid droplets through its catalytic domain. J. Biol. Chem. 292, 19087-19098. https://doi.org/10.1074/jbc.M117.792978
  12. Hirokawa, T., Boon-Chieng, S., and Mitaku, S. (1998). SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378-379. https://doi.org/10.1093/bioinformatics/14.4.378
  13. Hofmann, K. and Stoffel, W. (1993). TMbase - a database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 374, 166.
  14. Hristova, K., Wimley, W.C., Mishra, V.K., Anantharamiah, G.M., Segrest, J.P., and White, S.H. (2009). An amphipathic alpha-helix at a membrane interface: a structural study using a novel X-ray diffraction method. J. Mol. Biol. 290, 99-117. https://doi.org/10.1006/jmbi.1999.2840
  15. Huang, F.F., Chang, P.A., Sun, L.X., Qin, W.Z., Han, L.P., and Chen, R. (2016). The destruction box is involved in the degradation of the NTE family proteins by the proteasome. Mol. Biol. Rep. 43, 1285-1292. https://doi.org/10.1007/s11033-016-4063-2
  16. Kassan, A., Herms, A., Fernandez-Vidal, A., Bosch, M., Schieber, N.L., Reddy, B.J., Fajardo, A., Gelabert-Baldrich, M., Tebar, F., Enrich, C., et al. (2013). Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J. Cell Biol. 203, 985-1001. https://doi.org/10.1083/jcb.201305142
  17. Kien, B., Grond, S., Haemmerle, G., Lass, A., Eichmann, T.O., and Radner, F.P.W. (2018). ABHD5 stimulates PNPLA1-mediated ${\omega}$-O-acylceramide biosynthesis essential for a functional skin permeability barrier. J. Lipid Res. 59, 2360-2367. https://doi.org/10.1194/jlr.M089771
  18. Kienesberger, P.C., Lass, A., Preiss-Landl, K., Wolinski, H., Kohlwein, S.D., Zimmermann, R., and Zechner, R. (2008). Identification of an insulin-regulated lysophospholipase with homology to neuropathy target esterase. J. Biol. Chem. 283, 5908-5917. https://doi.org/10.1074/jbc.M709598200
  19. Kienesberger, P.C., Oberer, M., Lass, A., and Zechner, R. (2009). Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. J. Lipid Res. 50 Suppl, S63-S68. https://doi.org/10.1194/jlr.R800082-JLR200
  20. Kory, N., Farese, R.V., Jr., and Walther, T.C. (2016). Targeting fat: mechanisms of protein localization to lipid droplets. Trends Cell Biol. 26, 535-546. https://doi.org/10.1016/j.tcb.2016.02.007
  21. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567-580. https://doi.org/10.1006/jmbi.2000.4315
  22. Li, Y., Dinsdale, D., and Glynn, P. (2003). Protein domains, catalytic activity, and subcellular distribution of neuropathy target esterase in Mammalian cells. J. Biol. Chem. 278, 8820-8825. https://doi.org/10.1074/jbc.M210743200
  23. Lush, M.J., Li, Y., Read, D.J., Willis, A.C., and Glynn, P. (1998). Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man. Biochem. J. 332(Pt 1), 1-4. https://doi.org/10.1042/bj3320001
  24. Murugesan, S., Goldberg, E.B., Dou, E., and Brown, W.J. (2013). Identification of diverse lipid droplet targeting motifs in the PNPLA family of triglyceride lipases. PLoS One 8, e64950. https://doi.org/10.1371/journal.pone.0064950
  25. Ohno, Y., Nara, A., Nakamichi, S., and Kihara, A. (2018). Molecular mechanism of the ichthyosis pathology of Chanarin-Dorfman syndrome: Stimulation of PNPLA1-catalyzed ${\omega}$-O-acylceramide production by ABHD5. J. Dermatol. Sci. 92, 245-253. https://doi.org/10.1016/j.jdermsci.2018.11.005
  26. Ostermeyer, A.G., Ramcharan, L.T., Zeng, Y., Lublin, D.M., and Brown, D.A. (2004). Role of the hydrophobic domain in targeting caveolin-1 to lipid droplets. J. Cell Biol. 164, 69-78. https://doi.org/10.1083/jcb.200303037
  27. Papadopoulos, C., Orso, G., Mancuso, G., Herholz, M., Gumeni, S., Tadepalle, N., Jungst, C., Tzschichholz, A., Schauss, A., Honing, S., et al. (2015). Spastin binds to lipid droplets and affects lipid metabolism. PLoS Genet. 11, e1005149. https://doi.org/10.1371/journal.pgen.1005149
  28. Pichery, M., Huchenq, A., Sandhoff, R., Severino-Freire, M., Zaafouri, S., Opalka, L., Levade, T., Soldan, V., Bertrand-Michel, J., Lhuillier, E., et al. (2017). PNPLA1 defects in patients with autosomal recessive congenital ichthyosis and KO mice sustain PNPLA1 irreplaceable function in epidermal omega-O-acylceramide synthesis and skin permeability barrier. Hum. Mol. Genet. 26, 1787-1800. https://doi.org/10.1093/hmg/ddx079
  29. Quistad, G.B., Barlow, C., Winrow, C.J., Sparks, S.E., and Casida, J.E. (2003). Evidence that mouse brain neuropathy target esterase is a lysophospholipase. Proc. Natl. Acad. Sci. U. S. A. 100, 7983-7987. https://doi.org/10.1073/pnas.1232473100
  30. Read, D.J., Li, Y., Chao, M.V., Cavanagh, J.B., and Glynn, P. (2009). Neuropathy target esterase is required for adult vertebrate axon maintenance. J. Neurosci. 29, 11594-11600. https://doi.org/10.1523/JNEUROSCI.3007-09.2009
  31. Reue, K. (2011). Lipid droplet storage and metabolism: from yeast to man. J. Lipid Res. 52, 1865-1868. https://doi.org/10.1194/jlr.E020602
  32. Seelig, J. (2004). Thermodynamics of lipid-peptide interactions. Biochim. Biophys. Acta 1666, 40-50. https://doi.org/10.1016/j.bbamem.2004.08.004
  33. Sztalryd, C. and Brasaemle, D.L. (2017). The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 1221-1232. https://doi.org/10.1016/j.bbalip.2017.07.009
  34. Tusnady, G.E. and Simon, I. (2001). The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849-850. https://doi.org/10.1093/bioinformatics/17.9.849
  35. Tzen, J.T., Lie, G.C., and Huang, A.H. (1992). Characterization of the charged components and their topology on the surface of plant seed oil bodies. J. Biol. Chem. 267, 15626-15634. https://doi.org/10.1016/S0021-9258(19)49582-3
  36. van Tienhoven, M., Atkins, J., Li, Y., and Glynn, P. (2002). Human neuropathy target esterase catalyzes hydrolysis of membrane lipids. J. Biol. Chem. 277, 20942-20948. https://doi.org/10.1074/jbc.M200330200
  37. Wijeyesakere, S.J., Richardson, R.J., and Stuckey, J.A. (2007). Modeling the tertiary structure of the patatin domain of neuropathy target esterase. Protein J. 26, 165-172. https://doi.org/10.1007/s10930-006-9058-8
  38. Wilson, P.A., Gardner, S.D., Lambie, N.M., Commans, S.A., and Crowther, D.J. (2006). Characterization of the human patatin-like phospholipase family. J. Lipid Res. 47, 1940-1949. https://doi.org/10.1194/jlr.M600185-JLR200
  39. Zaccheo, O., Dinsdale, D., Meacock, P.A., and Glynn, P. (2004). Neuropathy target esterase and its yeast homologue degrade phosphatidylcholine to glycerophosphocholine in living cells. J. Biol. Chem. 279, 24024-24033. https://doi.org/10.1074/jbc.M400830200
  40. Zhang, C. and Liu, P. (2019). The new face of the lipid droplet: lipid droplet proteins. Proteomics 19, e1700223. https://doi.org/10.1002/pmic.201700223

피인용 문헌

  1. Consensus module analysis of abdominal fat deposition across multiple broiler lines vol.22, pp.1, 2020, https://doi.org/10.1186/s12864-021-07423-6