DOI QR코드

DOI QR Code

Inhibitory Effects of Human Glutamate Dehydrogenase Isozymes by Antipsychotic Drugs for Schizophrenia

정신분열증 치료제에 의한 사람 글루탐산염 탈수소효소 동종효소의 억제효과

  • Nam, A-Reum (Department of Biomedical Laboratory Science, Konyang University) ;
  • Kim, In-Sik (Department of Biomedical Laboratory Science, School of Medicine, Eulji University) ;
  • Yang, Seung-Ju (Department of Biomedical Laboratory Science, Konyang University)
  • 남아름 (건양대학교 임상병리학과) ;
  • 김인식 (을지대학교 임상병리학과) ;
  • 양승주 (건양대학교 임상병리학과)
  • Received : 2015.11.13
  • Accepted : 2016.01.05
  • Published : 2016.01.31

Abstract

Glutamate is one of the major excitatory neurotransmitters in the central nervous system of vertebrates. Human GDH (hGDH) is the enzyme that regulates the glutamate metabolism and its expression is higher in the brains of schizophrenia patients than in normal subjects. This study examined the changes in the hGDH enzymatic activity caused by antipsychotic drugs (haloperidol, risperidone, (${\pm}$)-sulpride, chlopromazine hydrochloride, melperone, (${\pm}$)butaclamol, domperidone, clozapine) related to schizophrenia. First of all, hGDH isozymes (hGDH1, hGDH2) were synthesized by genetic recombination. As a result of the enzyme assay, haloperidol, (${\pm}$)-sulpride, melperone and clozapine had an inhibitory effect on the hGDH isozymes. In addition, haloperidol showed a non-competitive inhibition against the substrate, 2-oxoglutarate. In contrast, it showed an uncompetitive inhibition against another substrate, NADH. The inhibitory effect of haloperidol on hGDH2 was abolished by the presence of L-leucine, an allosteric effector of hGDH, but by not other antipsychotic drugs. These results revealed the inhibition of enzyme activity by psychotropic drugs in hGDH isoenzymes (hGDH1 and hGDH2) and the possibility that haloperidol may be used to regulate the GDH activity and glutamate concentration in the central nervous system.

글루탐산염(Glutamate)은 척추동물의 중추신경계에서 중요한 흥분성 신경전달물질 중의 하나이다. 글루탐산염의 대사를 조절하는 사람 글루탐산염 탈수소 효소(hGDH)는 정신분열증(schizophrenia) 환자의 대뇌에서 발현이 증가한다는 연구들이 있었다. 본 연구에서는 정신분열증과 연관된 항정신성약물인 haloperidol, risperidone, (${\pm}$)-sulpride, chlopromazine hydrochloride, melperone, (${\pm}$)butaclamol, domperidone, clozapine에 의한 hGDH의 효소활성변화를 확인하고자 하였다. 우선, 유전자 재조합을 통해 hGDH 동종효소 hGDH1, hGDH2를 합성하였다. 합성된 hGDH1과 hGDH2에 대한 항정신성약물의 억제효과를 효소검사법(enzyme assay)을 통해 확인한 결과, haloperidol, (${\pm}$)-sulpride, melperone, clozapine에 의해 hGDH1과 hGDH2의 효소활성이 억제되었다. 또한, 단백질 인산화 효소 측정법(kinase assay)을 하여 haloperidol이 기질인 알파-케토글루타르산에 대하여는 비경쟁적 저해반응(noncompetitive inhibition)을, NADH에 대하여서는 반경쟁적 저해반응(uncompetitive inhibition)이 나타는 것을 확인하였다. 입체성 다른 자리 작동체(allosteric effector)인 L-leucine이 다른 정신병치료제에서는 hGDH2의 억제를 회복시켰지만 오직 haloperidol에서는 효소의 활성이 회복되지 않았다. 따라서 본 연구는 hGDH1과 hGDH2 에서 항정신성약물에 의한 효소활성 억제를 비교하여 확인하였으며, 중추신경계에서 haloperidol이 GDH 활성 조절과 함께 글루탐산 농도를 조절할 수 있다는 가능성을 제시한다.

Keywords

References

  1. Perez SM, Lodge DJ. New approaches to the management of schizophrenia: focus on aberrant hippocampal drive of dopamine pathways. Drug Design, Development and Therapy. 8:887-896, 2014.
  2. Valencia M, Fresan A, Barak Y, Juarez F, Escamilla R, Saracco R. Predicting functional remission in patients with schizophrenia: a cross-sectional study of symptomatic remission, psycho-social remission, functioning, and clinical outcome. Neuropsychiatric Disease and Treatment. 11:2339-2348, 2015. DOI: http://dx.doi.org/10.2147/NDT.S87335
  3. McGrath J, Saha S, Welham J, El Saadi O, MacCauley C, Chant D. A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Med. 2:13, 2004. DOI: http://dx.doi.org/10.1186/1741-7015-2-13
  4. Stilo SA, Murray RM. The epidemiology of schizophrenia: replacing dogma with knowledge. Dialogues Clin Neurosci. 12:305-315, 2010.
  5. Nitin Gogtay, Nora S. Vyas, Renee Testa, Stephen J. Wood, and Christos Pantelis Age of Onset of Schizophrenia: Perspectives From Structural Neuroimaging Studies Schizophr Bull 37 (3): 504-513, 2011. DOI: http://dx.doi.org/10.1093/schbul/sbr030
  6. Jiyeon Kwak, Yangmi Kim. The effect of anti psychotics and antidepressants on the TREK2 channel. Journal of the Korea Academia-Industrial cooperation Society, 13:5:2125-2132, 2012. https://doi.org/10.5762/KAIS.2012.13.5.2125
  7. Rauser, L., Savage, J. E., Meltzer, H. Y., & Roth, B. L. Inverse agonist actions of typical and atypical antipsychotic drugs at the human 5-hydroxytryptamine2C receptor. Journal of Pharmacology and Experimental Therapeutics, 299(1), 83-89, 2001.
  8. Haris, M., Nath, K., Cai, K., Singh, A., Crescenzi, R., Kogan, F., & Reddy, R. Imaging of glutamate neurotransmitter alterations in Alzheimer's disease. NMR in biomedicine, 26(4), 386-391, 2013. DOI: http://dx.doi.org/10.1002/nbm.2875
  9. Javitt, D.C. Glutamate and schizophrenia: Phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int. Rev. Neurobiol. 78:69-108, 2007. DOI: http://dx.doi.org/10.1016/j.schres.2006.11.024
  10. Magnuson, J., Leonessa, F., Ling, G.S. Neuropathology of explosive blast traumatic brain injury. Curr Neurol Neurosci Rep. 12:570-579, 2012. DOI: http://dx.doi.org/10.1007/s11910-012-0303-6
  11. Beasley, C. L., Pennington, K., Behan, A., Wait, R., Dunn, M. J., Cotter, D. Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: Evidence for disease-associated changes. Proteomics. 6:3414-3425, 2006. DOI: http://dx.doi.org/10.1002/pmic.200500069
  12. Plaitakis, A, and Shashidharan, P. Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: implications for the pathogenesis of Parkinson's disease. J. Neurol. 247 Suppl 2, II25-II35, 2000. DOI: http://dx.doi.org/10.1007/PL00007757
  13. C Anthony Altar, Marquis P Vawter and Stephen D Ginsberg. Target Identification for CNS Diseases by Transcriptional Profiling. Neuropsychopharmacology 34, 18-54, 2009. DOI: http://dx.doi.org/10.1038/npp.2008.172
  14. Spanaki C, Zaganas I, Kleopa KA, Plaitakis A. Human GLUD2 Glutamate Dehydrogenase Is Expressed in Neural and Testicular Supporting Cells. The Journal of Biological Chemistry. 285(22):16748-16756. 2010. DOI: http://dx.doi.org/10.1074/jbc.M109.092999
  15. Cavallaro, S., D'Agata, V., Manickam, P., Dufour, F., & Alkon, D. L. Memory-specific temporal profiles of gene expression in the hippocampus. Proceedings of the National Academy of Sciences, 99(25), 16279-16284, 2002. DOI: http://dx.doi.org/10.1073/pnas.242597199
  16. Yang, S. J., Huh, J. W., Hong, H. N., Kim, T. U., & Cho, S. W. Important role of Ser443 in different thermal stability of human glutamate dehydrogenase isozymes. FEBS letters, 562(1), 59-64, 2004. DOI: http://dx.doi.org/10.1016/S0014-5793(04)00183-8
  17. Choi, M.M., Kim, E.A., Huh, J.W., Choi, S.Y., Cho, S.W., Yang, S.J. siRNA mediated silencing of human glutamate dehydrogenase induces apoptosis in neuroblastoma cells. Biotechnol Appl Biochem. 51, 107-110, 2008. DOI: http://dx.doi.org/10.1042/BA20070190
  18. Myung-Min Choi, Jae-Wan Huh, Seung-Ju Yang, Eun Hee Cho, Soo Young Choi, Sung-Woo Cho, Identification of ADP-ribosylation site in human glutamate dehydrogenase isozymes, FEBS Letters, vol. 579, no. 19, pp. 4125-4130, 2005. https://doi.org/10.1016/j.febslet.2005.06.041
  19. Seung-Ju Yang, Jae-Wan Huh, Hea-Nam Hong, Tae Ue Kim, Sung-Woo Cho, Important role of Ser443 in different thermal stability of human glutamate dehydrogenase isozymes 1, FEBS Letters, Vol. 562, no. 3, pp. 59-64, 2004. https://doi.org/10.1016/S0014-5793(04)00183-8
  20. Choi, M., Kim, E., Choi, S. Y., Kim, T. U., Cho, S., & Yang, S. Inhibitory properties of nerve-specific human glutamate dehydrogenase isozyme by chloroquine. Journal of biochemistry and molecular biology, 40(6), 1077, 2007. DOI: http://dx.doi.org/10.5483/BMBRep.2007.40.6.1077