• Title/Summary/Keyword: non-convex optimization

Search Result 95, Processing Time 0.032 seconds

Robust Non-fragile Guaranteed Cost Control for Uncertain Descriptor Systems with State Delay (시간지연을 가지는 변수 불확실성 특이시스템의 비약성 강인 보장비용 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1491-1497
    • /
    • 2007
  • This paper considers robust and non-fragile guaranteed cost controller design method for descriptor systems with parameter uncertainties and time delay, and static state feedback controller with gain variations. The existence condition of controller, the design method of controller, the upper bound to minimize guaranteed cost function, and the measure of non-fragility in controller are proposed using linear matrix inequality (LMI) technique, which can be solved efficiently by convex optimization. Therefore, the presented robust and non-fragile guaranteed cost controller guarantees the asymptotic stability and non-fragility of the closed loop systems in spite of parameter uncertainties, time delay, and controller fragility.

Synthesis of Automatically Path-Generating Four-Bar Linkage Using NURBS (NURBS를 이용한 4절 링크의 자동 경로 생성)

  • Hwang, Deuk-Hyun;Yang, Hyun-Ik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.576-584
    • /
    • 2009
  • Up to now, it has been said that no satisfactory computer solution has been found for synthesizing four-bar linkage based on the prescribed coupler link curve. In our study, an algorithm has been developed to improve the design synthesis of four bar linkage based on the 5 precision points method. The suggested algorithm generates the desired coupler curve by using NURBS, and then the generated curve approximates as closely as possible to the desired curve representing coupler link trajectory. Also, when comparing each generated curve by constructing the control polygon, rapid comparison is easily achieved by applying convex hull of the control polygon. Finally, an optimization process using ADS is incorporated into the algorithm based on the 5 precision point method to reduce the total optimization process time. As for examples, two four bar linkages were tested and the result well demonstrated the effectiveness of the algorithm.

  • PDF

Robust Energy Efficiency Power Allocation for Uplink OFDM-Based Cognitive Radio Networks

  • Zuo, Jiakuo;Dao, Van Phuong;Bao, Yongqiang;Fang, Shiliang;Zhao, Li;Zou, Cairong
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.506-509
    • /
    • 2014
  • This paper studies the energy efficiency power allocation for cognitive radio networks based on uplink orthogonal frequency-division multiplexing. The power allocation problem is intended to minimize the maximum energy efficiency measured by "Joule per bit" metric, under total power constraint and robust aggregate mutual interference power constraint. However, the above problem is non-convex. To make it solvable, an equivalent convex optimization problem is derived that can be solved by general fractional programming. Then, a robust energy efficiency power allocation scheme is presented. Simulation results corroborate the effectiveness of the proposed methods.

RELATION BETWEEN DEMYANOV DIFFERENCE AND MINKOWSKI DIFFERENCE OF CONVEX COMPACT SUBSETS IN $R^2$

  • Song, Chun-Ling;Xia, Zun-Quan;Zhang, Li-Wei;Li, Shu-Yang
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.353-359
    • /
    • 2007
  • A necessary and sufficient condition for Demyanov difference and Minkowski difference of compact convex subsets in $R^2$ being equal is given in this paper. Several examples are computed by Matlab to test our result. The necessary and sufficient condition makes us to compute Clarke subdifferential by quasidifferential for a special of Lipschitz functions.

Robust and Non-fragile $H_{\infty}$ Control for Descriptor Systems with Parameter Uncertainties and Time Delay

  • Kim, Jong-Hae;Oh, Do-Chang
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • This paper describes a robust and non-fragile $H_{\infty}$ controller design method for descriptor systems with parameter uncertainties and time delay, as well as a static state feedback controller with multiplicative uncertainty. The controller existence condition, as well as its design method, and the measure of non-fragility in the controller are proposed using linear matrix inequality(LMI) technique, which can be solved efficiently by convex optimization. Therefore, the presented robust and non-fragile $H_{\infty}$ controller guarantees the asymptotic stability and disturbance attenuation of the closed loop systems within a prescribed degree in spite of parameter uncertainties, time delay, disturbance input and controller fragility.

Optimization Methods for Power Allocation and Interference Coordination Simultaneously with MIMO and Full Duplex for Multi-Robot Networks

  • Wang, Guisheng;Wang, Yequn;Dong, Shufu;Huang, Guoce;Sun, Qilu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.216-239
    • /
    • 2021
  • The present work addresses the challenging problem of coordinating power allocation with interference management in multi-robot networks by applying the promising expansion capabilities of multiple-input multiple-output (MIMO) and full duplex systems, which achieves it for maximizing the throughput of networks under the impacts of Doppler frequency shifts and external jamming. The proposed power allocation with interference coordination formulation accounts for three types of the interference, including cross-tier, co-tier, and mixed-tier interference signals with cluster head nodes operating in different full-duplex modes, and their signal-to-noise-ratios are respectively derived under the impacts of Doppler frequency shifts and external jamming. In addition, various optimization algorithms, including two centralized iterative optimization algorithms and three decentralized optimization algorithms, are applied for solving the complex and non-convex combinatorial optimization problem associated with the power allocation and interference coordination. Simulation results demonstrate that the overall network throughput increases gradually to some degree with increasing numbers of MIMO antennas. In addition, increasing the number of clusters to a certain extent increases the overall network throughput, although internal interference becomes a severe problem for further increases in the number of clusters. Accordingly, applications of multi-robot networks require that a balance should be preserved between robot deployment density and communication capacity.

On-demand Allocation of Multiple Mutual-compensating Resources in Wireless Downlinks: a Multi-server Case

  • Han, Han;Xu, Yuhua;Huang, Qinfei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.921-940
    • /
    • 2015
  • In this paper, we investigate the multi-resource allocation problem, a unique feature of which is that the multiple resources can compensate each other while achieving the desired system performance. In particular, power and time allocations are jointly optimized with the target of energy efficiency under the resource-limited constraints. Different from previous studies on the power-time tradeoff, we consider a multi-server case where the concurrent serving users are quantitatively restricted. Therefore user selection is investigated accompanying the resource allocation, making the power-time tradeoff occur not only between the users in the same server but also in different servers. The complex multivariate optimization problem can be modeled as a variant of 2-Dimension Bin Packing Problem (V2D-BPP), which is a joint non-linear and integer programming problem. Though we use state decomposition model to transform it into a convex optimization problem, the variables are still coupled. Therefore, we propose an Iterative Dual Optimization (IDO) algorithm to obtain its optimal solution. Simulations show that the joint multi-resource allocation algorithm outperforms two existing non-joint algorithms from the perspective of energy efficiency.

NoCOM: Near-Optimal Cell Outage Management for Guaranteeing User QoS (사용자 서비스 품질 보장을 위한 근접-최적 셀 아웃티지 관리 기법)

  • Lee, Kisong;Lee, Howon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.794-799
    • /
    • 2015
  • To manage cell outage problem in indoor wireless communication systems, we should resolve the problem of abrupt network failure quickly. In this paper, we propose a near-optimal cell outage management (NoCOM) scheme to support seamless services to users. In consideration of system throughput, user fairness, and the guarantee of QoS simultaneously, the NoCOM scheme finds the solution of subchannel and power allocations using a non-convex optimization technique and allocates radio resources to users iteratively. Through intensive simulations, we verify the outstanding performances of the proposed NoCOM scheme with respect to the average cell capacity, user fairness, and computational complexity.

ARM: Adaptive Resource Management for Wireless Network Reliability (무선 네트워크의 신뢰성 보장을 위한 적응적 자원 관리 기법)

  • Lee, Kisong;Lee, Howon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2382-2388
    • /
    • 2014
  • To provide network reliability in indoor wireless communication systems, we should resolve the problem of unexpected network failure rapidly. In this paper, we propose an adaptive resource management (ARM) scheme to support seamless connectivity to users. In consideration of system throughput and user fairness simultaneously, the ARM scheme adaptively determines the set of healing channels, and performs scheduling and power allocation iteratively based on a constrained non-convex optimization technique. Through intensive simulations, we demonstrate the superior performance results of the proposed ARM scheme in terms of the average cell capacity and user fairness.

The Economic Dispatch Problem with Valve-Point Effects Usinng a combination of PSO and HS (PSO-HS 알고리즘을 이용한 전력계통의 경제급전)

  • Yoon, Jae-Yeoung;Park, Chi-Yeong;Song, Hyoung-Yong;Park, Jong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.648-649
    • /
    • 2011
  • This Paper presents an efficient approach for solving the economic dispatch (ED) problems with valve-point effects using an combination of particle swarm optimization and harmony search. To reduce a premature convergence effect of PSO algorithm, We proposed PSO-HS algorithm considering evolutionary using harmony search algorithm. To prove the ability of the PSO-HS in solving nonlinear optimization problems, ED problems with non-convex solution spaces are solved with three different approach(PSO, HS, combination of PSO and HS)

  • PDF