• Title/Summary/Keyword: non-contact method

Search Result 836, Processing Time 0.026 seconds

Study of contact resistance using the transmission line method (TLM) pattern for metal of electrode (Cr/Ag & Ni) (TLM pattern을 사용한 Cr/Ag 및 Ni 전극에 따른 접합 저항 연구)

  • Hwang, Min-Young;Koo, Ki-Mo;Koo, Sun-Woo;Oh, Gyu-Jin;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.349-349
    • /
    • 2010
  • Great performance of many semiconductor devices requirs the use of low-resistance ohmic contact. Typically, transmission line method (TLM) patterns are used to measure the specific contact resistance between silicon and metal. In this works, we investigate contact resistance for metal dependent (Cr/Ag, Ni) using TLM pattern based on silicon-on-insulator (SOI) wafer. The electrode with Ni linearly increases contact resistance as the pattern distance increase from $15{\mu}m$ to $75{\mu}m$ in accumulation part, but non-linearly increase in inversion part. In additional, the electrode with Cr/Ag linearly increases contact resistance as the pattern distance increase from $15{\mu}m$ to $75{\mu}m$ in inversion part, but non-linearly increase in accumulation part.

  • PDF

Diameter Measurement of Cylindrical Objects by Non-Contact Method (비접촉식 방법에 의한 원통형 물체의 지름 측정)

  • Im, Bok-Ryoung;Kim, Sok-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.177-181
    • /
    • 2005
  • Although there are many ways to measure the diameter of a cylindrical object, in this study, the diameter of a cylindrical objects were measured by the geometric optical method and interference-diffraction method which are two kinds of tipical non-contact methods. In geometric optical method, the curved laser beam is formed on the cylindrical surface by spreading the inclined laser beam using the cylindrical lens. The curve is captured by CCD camera and the diameter is calculated by geometry. And the interference and diffraction patterns of investigated cylindrical objects are analyzed in interference-diffraction method. In this study, the cylindrical objects, whose diameters are $0.05\;mm\;\~\;100.50\;mm$ were measured by the geometric optical method and interference-diffraction method. The results show that in each method, the relative errors of the measurement are within $2\%$ and $1\%$, respectively and these non-contact methods can be applied in the quick measurement of many objects.

Non-Contact Damage Detection of Rotating Shafts by Using the Magnetostrictive Effect (마그네토스트릭션 효과를 이용한 회전축의 비접촉 결함진단)

  • Kim, Yun-Yeong;Han, Sun-U;Lee, Ho-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1599-1607
    • /
    • 2002
  • The purpose of this work is to suggest a new non-contact damage detection method for rotating ferromagnetic shafts. The presence and the location of a damage in rotating shafts are assessed by means of longitudinal elastic waves propagating along the shafts. These waves are measured by non-contact magnetostrictive sensors consisting of a coil and bias magnets. This paper shows the effectiveness of the sensors in the damage detection of rotating shafts. Several issues occurring in the application of the sensors to rotating shafts are carefully investigated.

Nanomachining on Single Crystal Silicon Wafer by Ultra Short Pulse Electrochemical Oxidation based on Non-contact Scanning Probe Lithography (비접촉 SPL기법을 이용한 단결정 실리콘 웨이퍼 표면의 극초단파 펄스 전기화학 초정밀 나노가공)

  • Lee, Jeong-Min;Kim, Sun-Ho;Kim, Tack-Hyun;Park, Jeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.395-400
    • /
    • 2011
  • Scanning Probe Lithography is a method to localized oxidation on single crystal silicon wafer surface. This study demonstrates nanometer scale non contact lithography process on (100) silicon (p-type) wafer surface using AFM(Atomic force microscope) apparatuses and pulse controlling methods. AFM-based experimental apparatuses are connected the DC pulse generator that supplies ultra short pulses between conductive tip and single crystal silicon wafer surface maintaining constant humidity during processes. Then ultra short pulse durations are controlled according to various experimental conditions. Non contact lithography of using ultra short pulse induces electrochemical reaction between micro-scale tip and silicon wafer surface. Various growths of oxides can be created by ultra short pulse non contact lithography modification according to various pulse durations and applied constant humidity environment.

Analysis and Design of Half-Bridge Series Resonant Converter for Non-Contact Battery Charger (무접점 베터리 충전 장치용 Half-Bridge 직렬 공진 컨버터 분석 및 설계)

  • Kim, Chang-Gyun;You, Jung-Sik;Park, Jong-Hu;Cho, Bo-Hyung;Seo, Dong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2508-2511
    • /
    • 1999
  • A non-contact battery charger which transfers energy using magnetic field without any electrical contacts is designed using half-bridge series resonant converter. This converter utilizes series resonance to reduce the undesirable effect of large leakage inductance of the non-contact transformer and ZVS operation can reduce switching losses. In this paper. analysis and design procedure of half-bridge series resonant converter with non-contact transformer is presented. Input voltage is 85VAC ${\sim}$ 270VAC, output voltage and current is 4.1V and 800mA, respectively. Furthermore, a method for calculating the secondary current of the transformer to control battery charging current in constant current charging mode which is required for litium-ion battery is proposed and the performance is verified from experiments.

  • PDF

Research on the Modeling of Non-contact Transformer (비접촉 변압기의 모델링에 관한 연구)

  • Ryu, Myung-Hyo;Cha, Honn-Yong;Baek, Ju-Won;Yoo, Dong-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.511-513
    • /
    • 2005
  • In this paper, the electrical characteristics of the non-contact transformer is presented using conventional coupled inductor theory. In high power applications, the non-contact transformer is so bulky and heavy that it poses some maintenance problems. Therefore it should be divided into some light transformer modules. This paper shows the analytic method of how to measure the parameters of the multiple connected non-contact transformer The analytical results are verified through measurement.

  • PDF

Development of Non-Adhesive, Non-Contact Inclinometer Slope Laser Measuring (ISLM) System and its Control Algorithm (레이저를 이용한 기울기 측정 장치 및 이의 제어 방법 개발)

  • Kim, Jae-Hyun;Lee, Seong-Min;Lee, Kihak;Choi, Woo-Suk;Baek, Seung-hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.25-34
    • /
    • 2021
  • This study develops a new device system for measuring a slope of object with non-adhesive, non-contact and non-face-to-face, namely Inclinometer Slope Laser Measuring (ISLM), that is applicable in the field. This system includes cradle, laser, camera, and computer and the filming and is performed after laser projection at programmed intervals. After measuring the amount of displacement converted to numerical values, these values can then be transferred to the office using the selected data transmission method. The obtained results from the test carried out to verify the reliability of the ISLM system indicated that the ISLM system can measure with accurately level of 0.1mm/Pixel at 1m distance and when increasing the camera resolution, the precision might increase proportionally. Therefore, the proposed measure system may widely apply on-site for various constructions, especially, in the case of object with very high surface temperature where exhibits difficulty to directly measure the adjacent structures. However, due to the sensitive reaction to the illuminance, this method can be applied with caution at times of large changes in illuminance, such as at dawn and at dusk.

Measurements of 3-D Deflection Characteristics of a Flexible Plate Levitated by Non-Contact Grippers Using SPIV Method (SPIV 기법을 이용한 비접촉 그리퍼에 의해 공중부양된 유연판의 3차원 변형 특성 측정)

  • Kim, Jaewoo;Kim, Joon Hyun;Lee, Yung Hoon;Sung, Jaeyong
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.54-62
    • /
    • 2021
  • This study has investigated the 3-D deflection characteristics of a flexible plate levitated by non-contact grippers using SPIV method. The measuring instrument consisted of a flexible plate located under four non-contact grippers and two cameras at the bottom of a transparent acrylic plate. Measurements were made on two materials (PVC and PC) for the plate with 50×50 cm2 area and 1 mm thickness. The deflection characteristics and flatness vary depending on the plate material, the gripper position and the air flow supplied to the gripper. For the material of PVC, the overall defection is convex. As the gripper position goes outward from the plate center, the upmost bending point also moves to the outside of the plate with the flatness increasing. However, the air flow rate does not affect the deflection pattern except for the small increase of flatness. For the material of PC, the shape of deflection changes from convex to concave as the gripper position goes out. The flatness is the highest at the point of transition from convex to concave, but the air flowrate has little effect on the flatness.

Development of a Non-contact Input System Based on User's Gaze-Tracking and Analysis of Input Factors

  • Jiyoung LIM;Seonjae LEE;Junbeom KIM;Yunseo KIM;Hae-Duck Joshua JEONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2023
  • As mobile devices such as smartphones, tablets, and kiosks become increasingly prevalent, there is growing interest in developing alternative input systems in addition to traditional tools such as keyboards and mouses. Many people use their own bodies as a pointer to enter simple information on a mobile device. However, methods using the body have limitations due to psychological factors that make the contact method unstable, especially during a pandemic, and the risk of shoulder surfing attacks. To overcome these limitations, we propose a simple information input system that utilizes gaze-tracking technology to input passwords and control web surfing using only non-contact gaze. Our proposed system is designed to recognize information input when the user stares at a specific location on the screen in real-time, using intelligent gaze-tracking technology. We present an analysis of the relationship between the gaze input box, gaze time, and average input time, and report experimental results on the effects of varying the size of the gaze input box and gaze time required to achieve 100% accuracy in inputting information. Through this paper, we demonstrate the effectiveness of our system in mitigating the challenges of contact-based input methods, and providing a non-contact alternative that is both secure and convenient.

Assessment of concrete macrocrack depth using infrared thermography

  • Bae, Jaehoon;Jang, Arum;Park, Min Jae;Lee, Jonghoon;Ju, Young K.
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.501-509
    • /
    • 2022
  • Cracks are common defects in concrete structures. Thus far, crack inspection has been manually performed using the contact inspection method. This manpower-dependent method inevitably increases the cost and work hours. Various non-contact studies have been conducted to overcome such difficulties. However, previous studies have focused on developing a methodology for non-contact inspection or local quantitative detection of crack width or length on concrete surfaces. However, crack depth can affect the safety of concrete structures. In particular, although macrocrack depth is structurally fatal, it is difficult to find it with the existing method. Therefore, an experimental investigation based on non-contact infrared thermography and multivariate machine learning was performed in this study to estimate the hidden macrocrack depth. To consider practical applications for inspection, an experiment was conducted that considered the simulated piloting of an unmanned aerial vehicle equipped with infrared thermography equipment. The crack depths (10-60 mm) were comparatively evaluated using linear regression, gradient boosting, and random forest (AI regression methods).