
SeonJae LEE, JunBeom KIM, Yunseo KIM, Jiyoung LIM / Korean Journal of Artificial Intelligence Vol 11 No1 (2023) 9-15 9

ISSN: 2508-7894 © 2022 KODISA & KAIA.

KJAI website: http://acoms.kisti.re.kr/kjai

doi: http://dx.doi.org/10.24225/kjai.2023.11.1.9

Development of a Non-contact Input System Based on

User's Gaze-Tracking and Analysis of Input Factors*

Jiyoung LIM1, Seonjae LEE2, Junbeom KIM3, Yunseo KIM4, Hae-Duck Joshua JEONG5

Received: Febrary 26, 2023. Revised: Febrary 28, 2023. Accepted: March 04, 2023

Abstract

As mobile devices such as smartphones, tablets, and kiosks become increasingly prevalent, there is growing interest in developing

alternative input systems in addition to traditional tools such as keyboards and mouses. Many people use their own bodies as a

pointer to enter simple information on a mobile device. However, methods using the body have limitations due to psychological

factors that make the contact method unstable, especially during a pandemic, and the risk of shoulder surfing attacks. To overcome

these limitations, we propose a simple information input system that utilizes gaze-tracking technology to input passwords and

control web surfing using only non-contact gaze. Our proposed system is designed to recognize information input when the user

stares at a specific location on the screen in real-time, using intelligent gaze-tracking technology. We present an analysis of the

relationship between the gaze input box, gaze time, and average input time, and report experimental results on the effects of

varying the size of the gaze input box and gaze time required to achieve 100% accuracy in inputting information. Through this

paper, we demonstrate the effectiveness of our system in mitigating the challenges of contact-based input methods, and providing

a non-contact alternative that is both secure and convenient.

Keywords : Eye-tracking, Intelligent gaze-tracking, Face Recognition, Gaze, Security, Non-contact input system

Major Classification Code: C45, C88, C91, L86, O33

1. Introduction12

Traditionally, information has been entered using

keyboards and mouses. However, the digital age, where

mobile devices such as smartphones and tablets are widely

used, requires alternative input methods. Even on mobile

* This study was supported by UISP (University Innovation Support

Project) of Korean Bible University in 2022
1 First Author. Professor, Dept. of Computer Software, Korean Bible

University, Korea. Email: jylim@bible.ac.kr
2 Second Author. Undergraduate student, Dept. of Computer

Software, Korean Bible University, Korea.
Email: dltjswo0323@bible.ac.kr

3 Third Author. Undergraduate student, Dept. of Computer Software,
Korean Bible University, Korea.
Email: estjunbeom@bible.ac.kr

devices, character and number string passwords have been

used for simple user authentication and early smartphone

lock screen security using soft keyboards. However, such

passwords can be difficult to remember if they are complex

and different for each service, leading to weak security (Kim,

& Kwon, 2016).

4 Fourth Author. Undergraduate student, Dept. of Computer
Software, Korean Bible University, Korea.
Email: kys051348@bible.ac.kr

5 Corresponding Author. Professor, Dept. of Computer Software,
Korean Bible University, Korea. Email: joshua@bible.ac.kr

ⓒ Copyright: The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons

Attribution Non-Commercial License (http://Creativecommons.org/licenses/by-nc/4.0/)
which permits unrestricted noncommercial use, distribution, and reproduction in any
medium, provided the original work is properly cited.

mailto:nacer6617@bible.ac.kr

10 SeonJae LEE, JunBeom KIM, Yunseo KIM, Jiyoung LIM / Korean Journal of Artificial Intelligence Vol 11 No1 (2023) 9-15

To address this issue, various password input methods

have been studied, including unlocking PIN numbers made

by combining numbers from 0 to 9, creating user-specific

patterns, and using user's body information such as

fingerprint recognition. However, these methods may not be

useful for individuals who are restricted from using their

bodies due to innate or acquired factors (Kang, Kim, Seo &

Kim, 2021). To overcome these limitations, researchers

have been studying password input methods that do not

require physical contact, such as gaze, gesture, and face

recognition. In particular, gaze-based input methods have

received attention due to their non-contact nature.

In this paper, we propose a gaze-based input method that

allows users to input simple information without physical

contact. Our method enables users to enter information such

as simple passwords and mouse clicks effectively, even in

environmental factors where they cannot use their hands.

Moreover, our proposed method is effective in solving

security problems such as shoulder surfing attacks.

The contribution of this paper is twofold. Firstly, we

demonstrate the relationship between the gaze input box,

gaze time, and average input time. Secondly, we present

experimental results on the size range of the gaze input box

and gaze time, which show conditions of 100% accuracy.

The remainder of this paper is organized as follows:

Section 2 provides an overview of related works, Section 3

introduces our proposed gaze input method, Section 4

presents the development and performance evaluation, and

finally, Section 5 concludes the paper with remarks and

future directions.

2. Related Works

We introduce various input method studies and points to

supplement related studies.

2.1 Input Method Using Body Part

The input method using the body commonly inputs a

number-based pattern using physical contact with the body

parts. Commonly, body-based input methods require

physical contact with body parts to enter numeric patterns.

For instance, a user can enter a numeric password from 1 to

9 using a single touch, as shown in Figure 1 (Ju & Seo, 2012).

The patterns in Figure 1 correspond to the numbers 5 and 7,

respectively. By combining single touch patterns to form

complex passwords, users can make it challenging for

attackers to guess or force the password. The user has a total

of 54 different numeric patterns available, with a 4-digit

password requiring a total of 8,503,056 possible

combinations.

Recent studies have explored multi-touch technology for

password input methods, which can recognize several touch

points when a user interacts with a touch screen or touchpad

(Ju & Seo, 2012). This technology supplements the

limitation of existing touch technology, which can only

recognize one touch point. In a 4-digit password, all input

values must be entered in multiple dimensions, rather than

one-dimensional input. Entered values are classified using

parentheses, and list types are used instead of character

types to enhance security.

However, inputting passwords through physical contact

poses risks in the current pandemic era, such as COVID-19,

as users could be exposed to viruses that remain on the

screen. Additionally, physical contact methods are

vulnerable to shoulder surfing attacks (Lim, Kim, & Kim,

2012), where attackers use fingerprints or traces to indirectly

or directly identify a user's password. Therefore, many

researchers have recently studied non-contact password

input methods, such as gaze, gesture, and face recognition,

as an alternative to physical contact.

Figure 1: Numeric Password System through Pattern

2.2 Input Method Using Eye

A proposed technique for inputting a four-digit decimal

password through a user's blink was introduced (Lee, 2022).

The Haar cascade classifier (Puttemans, 2021) provided by

OpenCV, an image processing library, was utilized to detect

the user's eyes. The proposed method employed gaze-

tracking technology to recognize the user's blink in real-time

and input the password.

The number of input methods using blinks can be largely

divided into three categories: when both eyes are opened,

when only one eye is closed, and when both eyes are closed.

If only one eye is closed, it can be further classified into two

categories, such as when only the right eye is closed and

when only the left eye is closed. When entering a number

with only one eye closed, it is used as a method of

determining which number to enter in a specific place.

The blink password input method allows the system to

distinguish between numbers by the sounds it produces

SeonJae LEE, JunBeom KIM, Yunseo KIM, Jiyoung LIM / Korean Journal of Artificial Intelligence Vol 11 No1 (2023) 9-15 11

without a separate input interface. To enter a single number,

the user can blink in the number section of their choice in the

number section from 0 to 9, which is then divided by sound.

The user can repeat this process four times to enter a four-

digit password.

Some researchers conducted a study on the PIN number

input method based on gaze-tracking technology. They

modified Gaze Gestures, a password input method based on

eye-tracking (De Luca, Weiss, & Drewes, 2007). When the

user makes each gesture for a number using their gaze, a

corresponding PIN number is entered for each gaze gesture.

When inputting a gaze gesture, a specific button should

be pressed, and the next gesture can then be input. This

method compensates for the shortcomings of previous

studies as it continuously analyzes the user's gaze. However,

there is a limitation that eye-tracking technology using

blinking can cause problems such as Midas' hand (Jacob,

1995), which generates unnecessary input regardless of the

user's intention. The gaze gesture also has a limitation in that

it is only input when the user presses the button and requires

physical contact.

2.3 Gaze Tracking Technology

Gaze-based technology has been utilized in various

applications, and the development of gaze-tracking

machines has continued to evolve up to the present (Seo,

2016). One of the representative open-source libraries used

for facial recognition and gaze tracking is Dlib (Heo, Kim,

& Lee, 2021; Boyko, Basystiuk, & Shakhovska, 2018),

which is based on the C++ language and includes various

machine learning algorithms for facial recognition.

The gaze-tracking method via the Dlib library operates

based on Facial Landmark Estimation (FLE) (Park, 2019).

As shown in Figure 2, FLE extracts 68 characteristic

descriptors from the user's face based on the brightness

value of the pixel, estimates the eyes, nose, and mouth, and

connects the eye coordinates of the feature points in a

vertical and horizontal direction to determine the

intersection point as the pupil. However, if the gaze moves,

the position of the pupil might not be in the center, making

it inappropriate to judge solely based on the eye shape

resulting from FLE.

WebGazer (Papoutsaki, Sangkloy, Laskey, Daskalova,

Huang, & Hays, 2016), is one of the gaze-tracking

technologies that use artificial intelligence technology to

learn and approximate gaze through user interaction. It

combines computer vision, image processing, and machine

learning technologies to track users' gaze movements

through webcams.

WebGazer goes beyond the capabilities of Dlib

technology and adds several assumptions to improve

performance. Dlib simply assumes that pupils will be at the

vertical and horizontal junctions of the eye contour, but

WebGazer assumes that after detecting the eye area, the

pupil is in the center of the eye, the iris is darker than the

surrounding area, and finally, the iris is circular.

Although the three assumptions of WebGazer are not

always accurate, they persist long enough to obtain reliable

accuracy from real-time results. When recognizing gaze in

WebGazer, it may fail to locate the pupil in the actual

appearance of the eye. To resolve this issue, the WebGazer

model changed the image of each eye to 6×10 and included

TurkerGazer (Martin, 2012).

3. Proposed Gaze Input Method

The overall flow of the proposed system is as follows. It

recognizes the user's face through the user's webcam and

extracts the user's gaze. The user then moves his gaze to

enter the information. If the information input through the

gaze is wrong, the input information is initialized and

returns to the part where the gaze is input.

Figure 2: Facial Landmarks

3.1 Extraction of User Gaze

In this paper, we use the WebGazer Js-object Detect

library (Mathias, 2014) to track the user's gaze to detect

pupil and user's facial shape as shown in Figure 3.

After detecting the face shape, it was designed to input

the user's pupil coordinates into the WebGazer model in

12 SeonJae LEE, JunBeom KIM, Yunseo KIM, Jiyoung LIM / Korean Journal of Artificial Intelligence Vol 11 No1 (2023) 9-15

milliseconds. As a result, the system outputs the predicted

gaze coordinates in real time.

Figure 3: Face recognition result

3.2 Input of User Gaze

In this section, as shown in the flowchart of Figure 4, the

gaze input method is described assuming that the user inputs

password information through the gaze.

Figure 4: Gaze Input Algorithm

Since the user's gaze does not stay at the gaze extraction

point but continues to move, it is very difficult to keep the

gaze fixed at one point. Therefore, the gaze input box was

virtually set on the computer screen, and the time the gaze

stayed in the input box was counted and accepted as input.

When the user stares at the gaze input box and the gaze

value is recognized, the count increases in milliseconds. If

the gaze value is not recognized in the gaze input box and

the count time is 0, the count of the system does not increase

and only stops at the step of extracting the gaze.

If the user's gaze recognition count value is equal to the

preset gaze time, the value of the corresponding gaze input

box in the gaze is input. If the count time is less than the

gaze time, such as when the gaze is directed to another place

in the middle, the value of the gaze input box that remained

in the user's gaze is not input and the count is initialized.

After completing the user gaze input, if the entered

password length matches the user's pre-specified password

length, proceed to password verification, and if the length

does not match, go back to entering the password.

4. Development and Performance Evaluation

4.1 Development Environments

As shown in Table 1, the user's gaze input algorithm was

implemented in JavaScript, a webcam was used to recognize

the user's face, and the type of webcam was a laptop's default

webcam. The interface through which the user inputs gaze

and confirms input is implemented in HTML and CSS.

Table 1: Development environments

OS Windows 11

CPU Intel(R) Core(TM) i5-1135G7

RAM 16GB

Camera HD UVC WebCam

IDE Visual Studio Code

Language HTML5, CSS3, JavaScript

4.2 Gaze Input Interface

Figure 5 shows the gaze input interface implemented in

this paper. It was implemented by arranging gaze input

boxes for users on the top, bottom, left, and right sides of the

experimental screen. The user may input a combination of

four input boxes using a gaze.

SeonJae LEE, JunBeom KIM, Yunseo KIM, Jiyoung LIM / Korean Journal of Artificial Intelligence Vol 11 No1 (2023) 9-15 13

Figure 5: Gaze input interface

As shown in Figure 5, it is implemented so that the user

can check whether the gaze is recognized on the upper right

side of the screen. When a user enters information using

gaze, only the number of gazes recognized by * mark can be

checked so that people other than the user cannot check the

information entered by the user.

4.2.1 The size of the gaze input box

In this section, we conducted experiments to determine

the minimum and maximum size of the gaze input box that

can accurately receive the user's gaze. The experiments were

performed on a window screen with a size of 1920 X 1080

by varying the size of the gaze input box from 40 to 300

pixels, as shown in Table 1. The examination time was fixed

at 1 and 1.5 seconds, and four consecutive random gaze

inputs were assumed to be one input. We repeated each input

ten times and obtained the experimental accuracy.

Table 2: Input accuracy according to the size of the gaze

input box

Box Size Gaze Time accuracy

40pixels 1.0seconds 60%

40pixels 1.5seconds 60%

70pixels 1.0seconds 60%

70pixels 1.5seconds 70%

100pixels 1.0seconds 60%

100pixels 1.5seconds 60%

120pixels 1.0seconds 80%

120pixels 1.5seconds 70%

150pixels 1.0seconds 100%

150pixels 1.5seconds 100%

200pixels 1.0seconds 100%

200pixels 1.5seconds 100%

250pixels 1.0seconds 100%

250pixels 1.5seconds 100%

Table 2 shows that when the width and height of the gaze

input box are less than 150 pixels each, the gaze extraction

point shakes, leading to an error in the user's desired

information input. However, if the size of the gaze input box

is too large, it may result in input to two adjacent gaze input

boxes when it exceeds 250 pixels on a 1920 X 1080 screen,

which is about 23% of the ratio.

We recommend selecting a large gaze input box to

prevent double input, but it should not exceed 150 pixels

unless necessary. 13-inch Tablets and 20-inch monitors

yielded the same results as 15-inch laptop monitors. In

summary, the optimal size of the gaze input box should be

selected based on the screen size and the accuracy required

for the task.

4.2.2 Gaze Time
In the gaze time experiments, presented in Table 3, we

varied the gaze time between 0.6 and 2.0 seconds, while

testing the input accuracy assuming that four consecutive

gaze inputs constitute one input. To achieve the experimental

accuracy, we fixed the gaze input box to 150, 200, and 250

pixels. As the input time becomes too long, we excluded gaze

times exceeding 2 seconds.

Our results demonstrate that gaze times of 0.6 and 0.8

seconds are insufficient for accurate information input, with

an input accuracy that is less than 100%. On the other hand,

stable and reliable experimental results were achieved

between 1.0 and 2.0 seconds of gaze time. However, we

observed that the user's gaze movement sometimes causes

inaccuracies, which can be improved by setting a longer test

time for the experiment.

Table 3: Accuracy with gaze time changes

Box Size Gaze Time accuracy

150pixels 0.6seconds 90%

150pixels 0.8seconds 100%

150pixels 1.0seconds 100%

150pixels 1.5seconds 100%

150pixels 2.0seconds 100%

200pixels 0.6seconds 70%

200pixels 0.8seconds 90%

200pixels 1.0seconds 100%

200pixels 1.5seconds 100%

200pixels 2.0seconds 100%

250pixels 0.6seconds 60%

250pixels 0.8seconds 90%

250pixels 1.0seconds 100%

250pixels 1.5seconds 100%

250pixels 2.0seconds 100%

4.2.3 Average Input Time
Table 4 assumes that four consecutive random gaze

inputs are one input and shows the average time required for

10 inputs. Analysis of the gaze time seems to be a natural

result, but the shorter the gaze time when the user looks at

the gaze input box, the less the average time it takes.

14 SeonJae LEE, JunBeom KIM, Yunseo KIM, Jiyoung LIM / Korean Journal of Artificial Intelligence Vol 11 No1 (2023) 9-15

Table 4: Average gaze input time

Box Size Gaze Time Average Time

150pixels 1.0seconds 12.085seconds

150pixels 1.5seconds 15.786seconds

150pixels 2.0seconds 17.864seconds

200pixels 1.0seconds 5.928seconds

200pixels 1.5seconds 8.858seconds

200pixels 2.0seconds 11.043seconds

250pixels 1.0seconds 5.529seconds

250pixels 1.5seconds 6.735seconds

250pixels 2.0seconds 9.258seconds

Assuming that gaze input is accurate, the average input

time decreases as the size of the gaze input box increases.

This is because the movement time between gaze input boxes

is reduced. However, in many cases, the user's gaze

extraction point on the screen may be different from the

user's intention due to the characteristics of the human gaze.

While this may not be an issue when entering a single piece

of information, it is recommended to increase the size of the

gaze input box when entering multiple pieces of information.

Therefore, an interface should be established to allow the size

of the gaze input box to be changed according to the user's

needs when entering information using gaze tracking.

Our proposed gaze input method has the advantage of

allowing the user to input information using only their gaze

without any physical activity. Additionally, the gaze input

method is immune to shoulder surfing attacks, and even if an

attacker observes the user's gaze, it is difficult to determine

the input value. It can also be used as a web surfing mouse

function, allowing users to perform four frequently used

functions: up and down scrolling, and back/forwarding.

Our gaze input method can be optimized for each user by

flexibly modifying the size of the box, gaze time, and number

of input information. The size of the gaze input box should

be at least 150 pixels and should be less than about 23% of

the short side of the monitor for tablets or desktop monitors.

Larger input boxes lead to less error or input time. In terms

of gaze time, it can be used for more than 1 second, but

should be adjustable depending on the user's available state.

A more precise gaze-tracking input system could be

developed if WebGazer learns the characteristics of the

human gaze that continue to fluctuate, even when we believe

we are fixated on a particular point.

5. Conlcusion

In conclusion, this paper proposed a novel non-contact

input method using intelligent gaze-tracking technology. Our

method allows users to enter information through gaze

without the need for physical contact, making it an ideal

solution for individuals who face restrictions in using their

bodies. Furthermore, our method can prevent security threats

like shoulder surfing attacks, making it a reliable solution in

securing sensitive information.

The main contribution of this paper lies in identifying the

optimal size of the gaze input box and the gaze time required

to achieve 100% accuracy in inputting information. Our

experimental results demonstrate that our proposed approach

is both reliable and practical.

Moving forward, we plan to improve our system by

developing algorithms that can correct unintended swaying

gaze to enhance the accuracy of our approach. This would

further improve the usability of our method, enabling users

to input a broader range of information conveniently.

References

Boyko, N., Basystiuk, O., & Shakhovska, N. (2018, August).

Performance evaluation and comparison of software for face

recognition, based on dlib and opencv library. In 2018 IEEE

Second International Conference on Data Stream Mining &

Processing (DSMP), 478-482.

De Luca, A., Weiss, R., & Drewes, H. (2007, November).

Evaluation of eye-gaze interaction methods for security

enhanced PIN-entry. In Proceedings of the 19th australasian

conference on computer-human interaction: Entertaining user

interfaces, 199-202.

Heo, S. Y., Kim, K. M., & Lee, W. J. (2021). Design and

Implementation of Visitor Access Control System using Deep

learning Face Recognition. Journal of digital convergence,

19(2), 245-251.

Jacob, R. J. (1995). Eye tracking in advanced interface design.

Virtual environments and advanced interface design, 258, 288.

Ju, S. H., & Seo, H. S. (2011). Password based user authentication

methodology using multi-input on multi-touch environment.

Journal of the Korea Society For Simulation, 20(1), 39-49.

Ju, S. H., & Seo, H. S. (2012). A study on User Authentication

Technology of Numeric based Pattern Password. Journal of the

Korea society of computer and information, 17(9), 65-73.

Kang, M., Kim, B., Seo, J., Kim, K. (2021). A Study on the

Feasibility of IoT and AI-based elderly care system application.

Korean Journal of Artificial Intelligence,9(2), 15-21.
Kim, S. Y., & Kwon, T. (2016). A Case Study of Password Usage

for Domestic Users. Journal of the Korea Institute of

Information Security & Cryptology, 26(4), 961-972.

Lee, S. H. (2022). An Input Method for Decimal Password Based

on Eyeblink Patterns. Journal of the Korea Institute of

Information and Communication Engineering, 26(5), 656-661.

Lim, S. M., Kim, H. J., & Kim, S. K. (2012). Designing Password

Input System Resistant on Shoulder Surfing Attack with

Statistical Analysis. Journal of the Institute of Electronics and

Information Engineers, 49(9), 215-224.

Martin, T. (2012). js-objectdetect. Retrieved Januray 13, 2023,

from https://github.com/mtschirs/js-objectdetect

https://github.com/mtschirs/js-objectdetect

SeonJae LEE, JunBeom KIM, Yunseo KIM, Jiyoung LIM / Korean Journal of Artificial Intelligence Vol 11 No1 (2023) 9-15 15

Mathias, A. (2014). clmtrackr. Retrieved Januray 13, 2023, from

https://github.com/auduno/clmtrackr

Papoutsaki, A., Laskey, J., & Huang, J. (2017, March). Searchgazer:

Webcam eye tracking for remote studies of web search.

In Proceedings of the 2017 conference on conference human

information interaction and retrieval, 17-26.

Park, K. N. (2019). A morphing method using control lines of facial

landmarks. The Journal of Digital Contents Society, 20(2),

443-450.

Puttemans, S. (2021). Object Detection using Haar cascades.

Retrieved Januray 12, 2023, from

https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.

html

Seo, E. S. (2016). mobile eye tracker and for use of the same for

revitalizing studies on eye tracking. The Journal of the Korea

Contents Association, 16(12), 10-18.

https://github.com/auduno/clmtrackr
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html

