• 제목/요약/키워드: non-coding RNA

검색결과 198건 처리시간 0.024초

LncRNA XLOC_006390 facilitates cervical cancer tumorigenesis and metastasis as a ceRNA against miR-331-3p and miR-338-3p

  • Luan, Xiaotian;Wang, Yankui
    • Journal of Gynecologic Oncology
    • /
    • 제29권6호
    • /
    • pp.95.1-95.17
    • /
    • 2018
  • Objective: Cervical cancer is one of the most common malignant tumors. Our previous results showed that long non-coding RNA (lncRNA) XLOC_006390 plays an important role in cervical cancer. In this study, we have explored the mechanism of action of lncRNA XLOC_006390. Methods: LncRNA XLOC_006390 was proposed to exercise its function as a competing endogenous RNA (ceRNA), and its potential targeted miRNAs was predicted through the database LncBase Predicted v.2. Two miRNAs, miR-331-3p, and miR-338-3p, were chosen for the study. Expression of miRNAs and lncRNA in cervical cancer cells and tissues was detected by reverse transcription polymerase chain reaction. To determine the correlation, silencing of XLOC_006390, over-expression of miR-331-3p, and miR-338-3p was performed in SiHa and Caski cell lines, respectively. Results: Based on the interactive effect between miRNA and lncRNA, miR-331-3p and miR-338-3p were significantly downregulated in cervical cancer cells and tissues, and their expression levels were negatively related to that of lncRNA. Our results also showed that the expression of miR-331-3p target gene NRP2, miR-338-3p target genes PKM2, EYA2 was significantly downregulated when the XLOC_006390 was knocked down. Further, XLOC_006390 was found to facilitate cervical cancer tumorigenesis and metastasis by downregulating miR-331-3p and miR-338-3p expression. Conclusion: Taken together, our study demonstrated that XLOC_006390 may serve as a ceRNA and reversely regulates the expression of miR-331-3p and miR-338-3p, thus facilitating cervical cancer tumorigenesis and metastasis.

Isolation and Functional Examination of the Long Non-Coding RNA Redrum

  • Lee, Yerim;Park, Charny;Lee, Sanghyuk;Lee, Daekee;Kim, Jaesang
    • Molecules and Cells
    • /
    • 제41권2호
    • /
    • pp.134-139
    • /
    • 2018
  • Here, we report isolation of multiple long non-coding RNAs (lncRNAs) expressed tissue-specifically during murine embryogenesis. One of these, subsequently came to be known as Redrum, is expressed in erythropoietic cells in fetal liver and adult bone marrow. Redrum transcription is also detected during pregnancy in the spleen where extramedullary hematopoiesis takes place. In order to examine the function of Redrum in vivo, we generated a gene-targeted murine model and analyzed its embryonic and adult erythropoiesis. The homozygous mutant embryo showed no apparent deficiency or defect in erythropoiesis. Adult erythropoiesis in bone marrow and in the spleen during pregnancy likewise showed no detectable phenotype as red blood cells matured in normal fashion. The phenotype is in contrast to the reported function of Redrum in vitro, and our observation implies that Redrum plays in vivo an accessory or supplementary role whose loss is compatible with normal erythropoiesis.

Functional Roles of Long Non-coding RNA in Human Breast Cancer

  • Ye, Ni;Wang, Bin;Quan, Zi-Fang;Cao, San-Jie;Wen, Xin-Tian;Huang, Yong;Huang, Xiao-Bo;Wu, Rui;Ma, Xiao-Ping;Yan, Qi-Gui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.5993-5997
    • /
    • 2014
  • The discovery of long noncoding RNA (LncRNA) changes our view of transcriptional and posttranscriptional regulation of gene expression. With application of new research techniques such as high-throughput sequencing, the biological functions of LncRNAs are gradually becoming to be understood. Multiple studies have shown that LncRNAs serve as carcinogenic factors or tumor suppressors in breast cancer with abnormal expression, prompts the question of whether they have potential value in predicting the stages and survival rate of breast cancer patients, and also as therapeutic targets. Focusing on the latest research data, this review mainly summarizes the tumorigenic mechanisms of certain LncRNAs in breast cancer, in order to provide a theoretical basis for finding safer, more effective treatment of breast cancer at the LncRNA molecular level.

LncRNA CRNDE Promotes the Progression of B-cell Precursor Acute Lymphoblastic Leukemia by Targeting the miR-345-5p/CREB Axis

  • Wang, Weimin;Wu, Feifei;Ma, Ping;Gan, Silin;Li, Xue;Chen, Li;Sun, Ling;Sun, Hui;Jiang, Zhongxing;Guo, Feng
    • Molecules and Cells
    • /
    • 제43권8호
    • /
    • pp.718-727
    • /
    • 2020
  • The imbalance between the proliferation and apoptosis of B-cell precursors is an important contributor to the pathogenesis of B-cell precursor acute lymphoblastic leukemia (BCP-ALL), while its specific regulatory mechanism remains perplexing. This study aimed to expound the underlying mechanism of the proliferation and apoptosis of BCP-ALL cells from the perspective of non-coding RNA. In this study, long non-coding RNA colorectal neoplasia differentially expressed (LncRNA CRNDE) was upregulated in the bone marrow of BCP-ALL patients and BCP-ALL cell lines (NALM-6 and RS4;11). Functionally, LncRNA CRNDE knockdown restrained cell proliferation and boosted cell apoptosis in NALM-6 and RS4;11 cells. The subsequent investigation confirmed that LncRNA CRNDE bound to miR-345-5p and negatively regulated miR-345-5p expression. The overexpression of miR-345-5p suppressed cell proliferation and boosted cell apoptosis in NALM-6 and RS4;11 cells. Further experiments revealed that miR-345-5p downregulated cyclic AMP response element-binding protein (CREB) expression by targeting its mRNA directly. CREB overexpression reversed the effect of miR-345-5p mimic on cell proliferation and apoptosis in NALM-6 and RS4;11 cells. Finally, in vivo experiments showed that LncRNA CRNDE knockdown prolonged the survival of mice xenotransplanted with NALM-6 cells. In conclusion, LncRNA CRNDE upregulated CREB expression by suppressing miR-345-5p, thus promoting cell proliferation and reducing cell apoptosis in BCP-ALL.

Altered expression of MALAT1 lncRNA in chronic lymphocytic leukemia patients, correlation with cytogenetic findings

  • Ahmadi, Abdolrahim;Kaviani, Saeid;Yaghmaie, Marjan;Pashaiefar, Hossein;Ahmadvand, Mohammad;Jalili, Mahdi;Alimoghaddam, Kamran;Eslamijouybari, Mohammad;Ghavamzadeh, Ardeshir
    • BLOOD RESEARCH
    • /
    • 제53권4호
    • /
    • pp.320-324
    • /
    • 2018
  • Background Recent studies have devoted much attention to non-protein-coding transcripts in relation to a wide range of malignancies. MALAT1, a long non-coding RNA, has been reported to be associated with cancer progression and prognosis. Thus, we here determined MALAT1 gene expression in chronic lymphocytic leukemia (CLL), a genetically heterogeneous disease, and explored its possible relationships with cytogenetic abnormalities. Methods MALAT1 expression level was evaluated using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) on blood mononuclear cells from 30 non-treated CLL patients and 30 matched healthy controls. Cytogenetic abnormalities were determined in patients by fluorescence in situ hybridization (FISH). Results MALAT1 expression level was up-regulated in the CLL group compared to healthy controls (P=0.008). Del13q14, followed by Del11q22, were the most prevalent cytogenetic abnormalities. We found no association between the FISH results and MALAT1 expression in patients. Conclusion Altered expression of MALAT1 is associated with CLL development. Further investigations are required to assess the relationship between this long non-coding RNA and CLL patient survival and prognosis.

Upregulation and Clinicopathological Significance of Long Non-coding NEAT1 RNA in NSCLC Tissues

  • Pan, Lin-Jiang;Zhong, Teng-Fei;Tang, Rui-Xue;Li, Ping;Dang, Yi-Wu;Huang, Su-Ning;Chen, Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2851-2855
    • /
    • 2015
  • Background: Recent reports have shown that nuclear enriched abundant transcript 1 (NEAT1), a long noncoding RNA (lncRNA), contributes to the precise control of gene expression and is related to several human malignancies. However, limited data are available on the expression and function of NEAT1 in lung cancer. The major objective of the current study was to profile the expression and clinicopathological significance of NEAT1 in non-small cell lung cancers (NSCLCs). Materials and Methods: NEAT1 expression in 125 NSCLC cases and paired adjacent non-cancer tissues was assessed by real-time quantitative reverse transcription-PCR (qRT-PCR). Relationships between NEAT1 and clinicopathological factors were also investigated. Results: The relative level of NEAT1 was $6.98{\pm}3.74$ in NSCLC tissues, significantly elevated as compared to that of the adjacent non-cancer lung tissues ($4.83{\pm}2.98$, p<0.001). The area under curve (AUC) of high expression of NEAT1 to diagnose NSCLC was 0.684 (95% CI: 0.619~0.750, p<0.001). NEAT1 expression was positively correlated with patient age (r=-2.007, p=0.047), lymphatic metastasis (r=-2.731, p=0.007), vascular invasion (r=-3.617, p=0.001) and clinical TNM stage (r=-4.134, p<0.001). Conclusions: This study indicates that NEAT1 might be associated with oncogenesis and progression in NSCLC, and suggests application in molecular targeted therapy.

Roles of non-coding RNAs in intercellular crosstalk in cardiovascular diseases

  • Yeong-Hwan Lim;Young-Kook Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권4호
    • /
    • pp.289-298
    • /
    • 2023
  • Complex diseases including cardiovascular disease are caused by a combination of the alternation of many genes and the influence of environments. Recently, non-coding RNAs (ncRNAs) have been shown to be involved in diverse diseases, and the functions of various ncRNAs have been reported. Many researchers have elucidated the mechanisms of action of these ncRNAs at the cellular level prior to in vivo and clinical studies of the diseases. Due to the characteristics of complex diseases involving intercellular crosstalk, it is important to study communication between multiple cells. However, there is a lack of literature summarizing and discussing studies of ncRNAs involved in intercellular crosstalk in cardiovascular diseases. Therefore, this review summarizes recent discoveries in the functional mechanisms of intercellular crosstalk involving ncRNAs, including microRNAs, long non-coding RNAs, and circular RNAs. In addition, the pathophysiological role of ncRNAs in this communication is extensively discussed in various cardiovascular diseases.

해수 순환여과양식시스템에서 분리된 Flavobacteriaceae 균주 KCTC 52651의 유전체 분석 (Complete genome sequence of Flavobacteriaceae strain KCTC 52651 isolated from seawater recirculating aquaculture system)

  • 김영삼;전용재;김경호
    • 미생물학회지
    • /
    • 제55권2호
    • /
    • pp.174-176
    • /
    • 2019
  • Flavobacteriaceae 과에 속하는 신균주인 RR4-38(= KCTC 52651 = DSM 108068)가 한국의 해수 순환여과양식시스템의 생물여과조에서 분리되었다. 41.9%의 G+C 함유량을 가진 3,182,272 bp의 길이의 하나의 완전한 유전체 컨티그가 PacBio RS II를 이용하여 얻어졌다. 이 유전체는 2,829개의 단백질 암호화 유전자와 6개의 rRNA 유전자, 38개 tRNA 유전자, 4개의 ncRNA 유전자, 9개의 유사유전자를 포함하고 있다. 이 결과는 해수 순환여과양식시스템에서 미생물의 활성을 이해하는데 통찰력을 줄 것이다.

Heterogeneous Sequences of Brain Cytoplasmic 200 RNA Formed by Multiple Adenine Nucleotide Insertions

  • Shin, Heegwon;Lee, Jungmin;Kim, Youngmi;Jang, Seonghui;Kim, Meehyein;Lee, Younghoon
    • Molecules and Cells
    • /
    • 제42권6호
    • /
    • pp.495-500
    • /
    • 2019
  • Brain cytoplasmic 200 RNA (BC200 RNA), originally identified as a neuron-specific non-coding RNA, is also observed in various cancer cells that originate from non-neural cells. Studies have revealed diverse functions of BC200 RNA in cancer cells. Accordingly, we hypothesized that BC200 RNA might be modified in cancer cells to generate cancerous BC200 RNA responsible for its cancer-specific functions. Here, we report that BC200 RNA sequences are highly heterogeneous in cancer cells by virtue of multiple adenine nucleotide insertions in the internal A-rich region. The insertion of adenine nucleotides enhances BC200 RNA-mediated translation inhibition, possibly by increasing the binding affinity of BC200 RNA for eIF4A (eukaryotic translation initiation factor 4A).