Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0108

Heterogeneous Sequences of Brain Cytoplasmic 200 RNA Formed by Multiple Adenine Nucleotide Insertions  

Shin, Heegwon (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
Lee, Jungmin (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
Kim, Youngmi (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
Jang, Seonghui (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
Kim, Meehyein (Virus Research and Testing Group, Korea Research Institute of Chemical Technology (KRICT))
Lee, Younghoon (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
Abstract
Brain cytoplasmic 200 RNA (BC200 RNA), originally identified as a neuron-specific non-coding RNA, is also observed in various cancer cells that originate from non-neural cells. Studies have revealed diverse functions of BC200 RNA in cancer cells. Accordingly, we hypothesized that BC200 RNA might be modified in cancer cells to generate cancerous BC200 RNA responsible for its cancer-specific functions. Here, we report that BC200 RNA sequences are highly heterogeneous in cancer cells by virtue of multiple adenine nucleotide insertions in the internal A-rich region. The insertion of adenine nucleotides enhances BC200 RNA-mediated translation inhibition, possibly by increasing the binding affinity of BC200 RNA for eIF4A (eukaryotic translation initiation factor 4A).
Keywords
adenine nucleotide insertion; BC200 RNA; cancer cells; eIF4A; translation inhibition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ren, H., Yang, X., Yang, Y., Zhang, X., Zhao, R., Wei, R., Zhang, X., and Zhang, Y. (2018). Upregulation of LncRNA BCYRN1 promotes tumor progression and enhances EpCAM expression in gastric carcinoma. Oncotarget 9, 4851-4861.   DOI
2 Samson, J., Cronin, S., and Dean, K. (2018). BC200 (BCYRN1) - the shortest, long, non-coding RNA associated with cancer. Noncoding RNA Res. 3, 131-143.   DOI
3 Shin, H., Kim, Y., Kim, M., and Lee, Y. (2018). BC200 RNA: an emerging therapeutic target and diagnostic marker for human cancer. Mol. Cells 41, 993-999.   DOI
4 Shin, H., Lee, J., Kim, Y., Jang, S., Lee, Y., Kim, S., and Lee, Y. (2017a). Knockdown of BC200 RNA expression reduces cell migration and invasion by destabilizing mRNA for calcium-binding protein S100A11. RNA Biol. 14, 1418-1430.   DOI
5 Shin, H., Lee, J., Kim, Y., Jang, S., Ohn, T., and Lee, Y. (2017b). Identifying the cellular location of brain cytoplasmic 200 RNA using an RNA-recognizing antibody. BMB Rep. 50, 318-322.   DOI
6 Shinde, D., Lai, Y., Sun, F., and Arnheim, N. (2003). Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites. Nucleic Acids Res. 31, 974-980.   DOI
7 Singh, R., Gupta, S.C., Peng, W.X., Zhou, N., Pochampally, R., Atfi, A., Watabe, K., Lu, Z., and Mo, Y.Y. (2016). Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis. Cell Death Dis. 7, e2262.   DOI
8 Tiedge, H., Chen, W., and Brosius, J. (1993). Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J. Neurosci. 13, 2382-2390.   DOI
9 Watson, J.B. and Sutcliffe, J.G. (1987). Primate brain-specific cytoplasmic transcript of the Alu repeat family. Mol. Cell. Biol. 7, 3324-3327.   DOI
10 Wu, J., Xie, F., Qian, K., Gibson, A.W., Edberg, J.C., and Kimberly, R.P. (2011). FAS mRNA editing in human systemic lupus erythematosus. Hum. Mutat. 32, 1268-1277.   DOI
11 Baranov, P.V., Hammer, A.W., Zhou, J., Gesteland, R.F., and Atkins, J.F. (2005). Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression. Genome Biol. 6, R25.   DOI
12 Booy, E.P., McRae, E.K., Koul, A., Lin, F., and McKenna, S.A. (2017). The long non-coding RNA BC200 (BCYRN1) is critical for cancer cell survival and proliferation. Mol. Cancer 16, 109.   DOI
13 Briggs, J.A., Wolvetang, E.J., Mattick, J.S., Rinn, J.L., and Barry, G. (2015). Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron 88, 861-877.   DOI
14 Chen, W., Bocker, W., Brosius, J., and Tiedge, H. (1997). Expression of neural BC200 RNA in human tumours. J. Pathol. 183, 345-351.   DOI
15 Jang, S., Shin, H., Lee, J., Kim, Y., Bak, G., and Lee, Y. (2017). Regulation of BC200 RNA-mediated translation inhibition by hnRNP E1 and E2. FEBS Lett. 591, 393-405.   DOI
16 Eom, T., Berardi, V., Zhong, J., Risuleo, G., and Tiedge, H. (2011). Dual nature of translational control by regulatory BC RNAs. Mol. Cell. Biol. 31, 4538-4549.   DOI
17 Han, K., Kim, K.S., Bak, G., Park, H., and Lee, Y. (2010). Recognition and discrimination of target mRNAs by Sib RNAs, a cis-encoded sRNA family. Nucleic Acids Res. 38, 5851-5866.   DOI
18 Hu, T. and Lu, Y.R. (2015). BCYRN1, a c-MYC-activated long non-coding RNA, regulates cell metastasis of non-small-cell lung cancer. Cancer Cell Int. 15, 36.   DOI
19 Jung, E., Lee, J., Hong, H.J., Park, I., and Lee, Y. (2014). RNA recognition by a human antibody against brain cytoplasmic 200 RNA. RNA 20, 805-814.   DOI
20 Kim, Y., Lee, J., Shin, H., Jang, S., Kim, S.C., and Lee, Y. (2017). Biosynthesis of brain cytoplasmic 200 RNA. Sci. Rep. 7, 6884.   DOI
21 Kondrashov, A.V., Kiefmann, M., Ebnet, K., Khanam, T., Muddashetty, R.S., and Brosius, J. (2005). Inhibitory effect of naked neural BC1 RNA or BC200 RNA on eukaryotic in vitro translation systems is reversed by poly(A)-binding protein (PABP). J. Mol. Biol. 353, 88-103.   DOI
22 Larsen, B., Wills, N.M., Nelson, C., Atkins, J.F., and Gesteland, R.F. (2000). Nonlinearity in genetic decoding: homologous DNA replicase genes use alternatives of transcriptional slippage or translational frameshifting. Proc. Natl. Acad. Sci. U.S.A. 97, 1683-1688.   DOI
23 Mus, E., Hof, P.R., and Tiedge, H. (2007). Dendritic BC200 RNA in aging and in Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 104, 10679-10684.   DOI
24 Lin, D., Pestova, T.V., Hellen, C.U., and Tiedge, H. (2008). Translational control by a small RNA: dendritic BC1 RNA targets the eukaryotic initiation factor 4A helicase mechanism. Mol. Cell. Biol. 28, 3008-3019.   DOI
25 Liu, X. and Gorovsky, M.A. (1993). Mapping the 5' and 3' ends of Tetrahymena thermophila mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE). Nucleic Acids Res. 21, 4954-4960.   DOI
26 Muddashetty, R., Khanam, T., Kondrashov, A., Bundman, M., Iacoangeli, A., Kremerskothen, J., Duning, K., Barnekow, A., Huttenhofer, A., Tiedge, H., et al. (2002). Poly(A)-binding protein is associated with neuronal BC1 and BC200 ribonucleoprotein particles. J. Mol. Biol. 321, 433-445.   DOI
27 Peng, J., Hou, F., Feng, J., Xu, S.X., and Meng, X.Y. (2018). Long non-coding RNA BCYRN1 promotes the proliferation and metastasis of cervical cancer via targeting microRNA-138 in vitro and in vivo. Oncol. Lett. 15, 5809-5818.