Browse > Article
http://dx.doi.org/10.14348/molcells.2018.2246

Isolation and Functional Examination of the Long Non-Coding RNA Redrum  

Lee, Yerim (Department of Life Science, Ewha Womans University)
Park, Charny (Department of Life Science, Ewha Womans University)
Lee, Sanghyuk (Department of Life Science, Ewha Womans University)
Lee, Daekee (Department of Life Science, Ewha Womans University)
Kim, Jaesang (Department of Life Science, Ewha Womans University)
Abstract
Here, we report isolation of multiple long non-coding RNAs (lncRNAs) expressed tissue-specifically during murine embryogenesis. One of these, subsequently came to be known as Redrum, is expressed in erythropoietic cells in fetal liver and adult bone marrow. Redrum transcription is also detected during pregnancy in the spleen where extramedullary hematopoiesis takes place. In order to examine the function of Redrum in vivo, we generated a gene-targeted murine model and analyzed its embryonic and adult erythropoiesis. The homozygous mutant embryo showed no apparent deficiency or defect in erythropoiesis. Adult erythropoiesis in bone marrow and in the spleen during pregnancy likewise showed no detectable phenotype as red blood cells matured in normal fashion. The phenotype is in contrast to the reported function of Redrum in vitro, and our observation implies that Redrum plays in vivo an accessory or supplementary role whose loss is compatible with normal erythropoiesis.
Keywords
erythropoiesis; hematopoiesis; long non-coding RNA; Redrum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alvarez-Dominguez, J.R., Hu, W., Yuan, B., Shi, J., Park, S.S., Gromatzky, A.A., van Oudenaarden, A. and Lodish, H.F. (2014). Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation. Blood 123, 570-581.   DOI
2 Djebali, S., Davis, C.A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., et al. (2012). Landscape of transcription in human cells. Nature 489, 101-108.   DOI
3 Hu, W., Yuan, B., Flygare, J., and Lodish, H.F. (2011). Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev. 25, 2573-2578.   DOI
4 Ma, Q., Chen, Z., del Barco Barrantes, I., de la Pompa, J.L., and Anderson, D.J. (1998). neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20, 469-482.   DOI
5 Poirier, F., Chan, C.T., Timmons, P.M., Robertson, E.J., Evans, M.J., and Rigby, P.W. (1991). The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development 113, 1105-1114.
6 Perry, R.B., and Ulitsky, I. (2016). The functions of long noncoding RNAs in development and stem cells. Development 143, 3882-3894.   DOI
7 Pertea, M. (2012). The human transcriptome: an unfinished story. Genes 3, 344-360.   DOI
8 Schmitz, S.U., Grote, P., and Herrmann, B.G. (2016). Mechanisms of long noncoding RNA function in development and disease. Cell Mol. Life Sci. 73, 2491-2509.   DOI
9 Tsiftsoglou, A.S., Vizirianakis, I.S., and Strouboulis, J. (2009). Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life 61, 800-830.   DOI
10 Zhang, J., Socolovsky, M., Gross, A.W., and Lodish, H.F. (2003). Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood 102, 3938-3946.   DOI
11 Palis, J. (2008). Ontogeny of erythropoiesis. Curr. Opin. Hematol. 15, 155-161.   DOI
12 Paralkar, V.R., and Weiss, M.J. (2013). Long noncoding RNAs in biology and hematopoiesis. Blood 121, 4842-4846.   DOI
13 Paralkar, V.R., Mishra, T., Luan, J., Yao, Y., Kossenkov, A.V., Anderson, S.M., Dunagin, M., Pimkin, M., Gore, M., Sun, D., et al. (2014). Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development. Blood 123, 1927-1937.   DOI