DOI QR코드

DOI QR Code

LncRNA XLOC_006390 facilitates cervical cancer tumorigenesis and metastasis as a ceRNA against miR-331-3p and miR-338-3p

  • Luan, Xiaotian (Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University) ;
  • Wang, Yankui (Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University)
  • Received : 2018.05.09
  • Accepted : 2018.07.31
  • Published : 2018.11.10

Abstract

Objective: Cervical cancer is one of the most common malignant tumors. Our previous results showed that long non-coding RNA (lncRNA) XLOC_006390 plays an important role in cervical cancer. In this study, we have explored the mechanism of action of lncRNA XLOC_006390. Methods: LncRNA XLOC_006390 was proposed to exercise its function as a competing endogenous RNA (ceRNA), and its potential targeted miRNAs was predicted through the database LncBase Predicted v.2. Two miRNAs, miR-331-3p, and miR-338-3p, were chosen for the study. Expression of miRNAs and lncRNA in cervical cancer cells and tissues was detected by reverse transcription polymerase chain reaction. To determine the correlation, silencing of XLOC_006390, over-expression of miR-331-3p, and miR-338-3p was performed in SiHa and Caski cell lines, respectively. Results: Based on the interactive effect between miRNA and lncRNA, miR-331-3p and miR-338-3p were significantly downregulated in cervical cancer cells and tissues, and their expression levels were negatively related to that of lncRNA. Our results also showed that the expression of miR-331-3p target gene NRP2, miR-338-3p target genes PKM2, EYA2 was significantly downregulated when the XLOC_006390 was knocked down. Further, XLOC_006390 was found to facilitate cervical cancer tumorigenesis and metastasis by downregulating miR-331-3p and miR-338-3p expression. Conclusion: Taken together, our study demonstrated that XLOC_006390 may serve as a ceRNA and reversely regulates the expression of miR-331-3p and miR-338-3p, thus facilitating cervical cancer tumorigenesis and metastasis.

Keywords

References

  1. Marth C, Landoni F, Mahner S, McCormack M, Gonzalez-Martin A, Colombo N, et al. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017;28:iv72-83. https://doi.org/10.1093/annonc/mdx220
  2. Global Burden of Disease Cancer CollaborationFitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 2017;3:524-48. https://doi.org/10.1001/jamaoncol.2016.5688
  3. Zhu H, Luo H, Zhang W, Shen Z, Hu X, Zhu X. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des Devel Ther 2016;10:1885-95.
  4. Kartha RV, Subramanian S. Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation. Front Genet 2014;5:8.
  5. Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics 2016;14:42-54. https://doi.org/10.1016/j.gpb.2015.09.006
  6. Zhao Y, Sun H, Wang H. Long noncoding RNAs in DNA methylation: new players stepping into the old game. Cell Biosci 2016;6:45. https://doi.org/10.1186/s13578-016-0109-3
  7. O'Leary VB, Hain S, Maugg D, Smida J, Azimzadeh O, Tapio S, et al. Long non-coding RNA PARTICLE bridges histone and DNA methylation. Sci Rep 2017;7:1790. https://doi.org/10.1038/s41598-017-01875-1
  8. Han P, Chang CP. Long non-coding RNA and chromatin remodeling. RNA Biol 2015;12:1094-8. https://doi.org/10.1080/15476286.2015.1063770
  9. Yoon JH, Abdelmohsen K, Gorospe M. Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol 2014;34:9-14. https://doi.org/10.1016/j.semcdb.2014.05.015
  10. Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell 2016;29:452-63. https://doi.org/10.1016/j.ccell.2016.03.010
  11. Hirai I, Kimura W, Ozawa K, Kudo S, Suto K, Kuzu H, et al. Perineural invasion in pancreatic cancer. Pancreas 2002;24:15-25. https://doi.org/10.1097/00006676-200201000-00003
  12. Wang Y, Li Z, Zheng S, Zhou Y, Zhao L, Ye H, et al. Expression profile of long non-coding RNAs in pancreatic cancer and their clinical significance as biomarkers. Oncotarget 2015;6:35684-98.
  13. Luan X, Wang Y. Long non-coding RNA XLOC_006390 promotes cervical cancer proliferation and metastasis through the regulation of SET domain containing 8. Oncol Rep 2017;38:159-66. https://doi.org/10.3892/or.2017.5663
  14. Paraskevopoulou MD, Vlachos IS, Karagkouni D, Georgakilas G, Kanellos I, Vergoulis T, et al. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 2016;44:D231-8. https://doi.org/10.1093/nar/gkv1270
  15. Yang D, Zhan M, Chen T, Chen W, Zhang Y, Xu S, et al. miR-125b-5p enhances chemotherapy sensitivity to cisplatin by down-regulating Bcl2 in gallbladder cancer. Sci Rep 2017;7:43109. https://doi.org/10.1038/srep43109
  16. Jia CW, Sun Y, Zhang TT, Lu ZH, Chen J. Effects of miR-125a-5p on cell proliferation, apoptosis and cell cycle of pancreatic cancer cells. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2016;38:415-21.
  17. Shen Z, Qin X, Yan M, Li R, Chen G, Zhang J, et al. Cancer-associated fibroblasts promote cancer cell growth through a miR-7-RASSF2-PAR-4 axis in the tumor microenvironment. Oncotarget 2017;8:1290-303.
  18. Shi C, Xu X. MiR-670-5p induces cell proliferation in hepatocellular carcinoma by targeting PROX1. Biomed Pharmacother 2016;77:20-6. https://doi.org/10.1016/j.biopha.2015.07.030
  19. Chen X, Luo H, Li X, Tian X, Peng B, Liu S, et al. miR-331-3p functions as an oncogene by targeting ST7L in pancreatic cancer. Carcinogenesis 2018;39:1006-15. https://doi.org/10.1093/carcin/bgy074
  20. Sun F, Yu M, Yu J, Liu Z, Zhou X, Liu Y, et al. miR-338-3p functions as a tumor suppressor in gastric cancer by targeting PTP1B. Cell Death Dis 2018;9:522. https://doi.org/10.1038/s41419-018-0611-0
  21. Zhao D, Sui Y, Zheng X. MiR-331-3p inhibits proliferation and promotes apoptosis by targeting HER2 through the PI3K/Akt and ERK1/2 pathways in colorectal cancer. Oncol Rep 2016;35:1075-82. https://doi.org/10.3892/or.2015.4450
  22. Epis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ. miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem 2009;284:24696-704. https://doi.org/10.1074/jbc.M109.030098
  23. Fujii T, Shimada K, Asano A, Tatsumi Y, Yamaguchi N, Yamazaki M, et al. MicroRNA-331-3p suppresses cervical cancer cell proliferation and E6/E7 expression by targeting NRP2. Int J Mol Sci 2016;17:1351. https://doi.org/10.3390/ijms17081351
  24. Epis MR, Giles KM, Beveridge DJ, Richardson KL, Candy PA, Stuart LM, et al. miR-331-3p and Aurora Kinase inhibitor II co-treatment suppresses prostate cancer tumorigenesis and progression. Oncotarget 2017;8:55116-34.
  25. Cao Y, Zhang J, Xiong D, Wang D, Wu T, Huang A, et al. Hsa-miR-331-3p inhibits VHL expression by directly targeting its mRNA 3'-UTR in HCC cell lines. Acta Biochim Pol 2015;62:77-82. https://doi.org/10.18388/abp.2014_779
  26. Chang RM, Yang H, Fang F, Xu JF, Yang LY. MicroRNA-331-3p promotes proliferation and metastasis of hepatocellular carcinoma by targeting PH domain and leucine-rich repeat protein phosphatase. Hepatology 2014;60:1251-63. https://doi.org/10.1002/hep.27221
  27. Cao Y, Chen J, Wang D, Peng H, Tan X, Xiong D, et al. Upregulated in hepatitis B virus-associated hepatocellular carcinoma cells, miR-331-3p promotes proliferation of hepatocellular carcinoma cells by targeting ING5. Oncotarget 2015;6:38093-106.
  28. Guo X, Guo L, Ji J, Zhang J, Zhang J, Chen X, et al. miRNA-331-3p directly targets E2F1 and induces growth arrest in human gastric cancer. Biochem Biophys Res Commun 2010;398:1-6. https://doi.org/10.1016/j.bbrc.2010.05.082
  29. Chen X, Pan M, Han L, Lu H, Hao X, Dong Q. miR-338-3p suppresses neuroblastoma proliferation, invasion and migration through targeting PREX2a. FEBS Lett 2013;587:3729-37. https://doi.org/10.1016/j.febslet.2013.09.044
  30. Huang N, Wu Z, Lin L, Zhou M, Wang L, Ma H, et al. MiR-338-3p inhibits epithelial-mesenchymal transition in gastric cancer cells by targeting ZEB2 and MACC1/Met/Akt signaling. Oncotarget 2015;6:15222-34.
  31. Fu X, Tan D, Hou Z, Hu Z, Liu G. miR-338-3p is down-regulated by hepatitis B virus X and inhibits cell proliferation by targeting the 3'-UTR region of CyclinD1. Int J Mol Sci 2012;13:8514-39. https://doi.org/10.3390/ijms13078514
  32. Xu H, Zhao L, Fang Q, Sun J, Zhang S, Zhan C, et al. MiR-338-3p inhibits hepatocarcinoma cells and sensitizes these cells to sorafenib by targeting hypoxia-induced factor $1{\alpha}$. PLoS One 2014;9:e115565. https://doi.org/10.1371/journal.pone.0115565
  33. Zhang P, Shao G, Lin X, Liu Y, Yang Z. MiR-338-3p inhibits the growth and invasion of non-small cell lung cancer cells by targeting IRS2. Am J Cancer Res 2017;7:53-63.
  34. Chen JT, Yao KH, Hua L, Zhang LP, Wang CY, Zhang JJ. MiR-338-3p inhibits the proliferation and migration of gastric cancer cells by targeting ADAM17. Int J Clin Exp Pathol 2015;8:10922-8.
  35. Shang C, Hong Y, Guo Y, Xue YX. Mir-338-3p inhibits malignant biological behaviors of glioma cells by targeting MACC1 gene. Med Sci Monit 2016;22:710-6.
  36. Zhang Y, Shi B, Chen J, Hu L, Zhao C. MiR-338-3p targets pyruvate kinase M2 and affects cell proliferation and metabolism of ovarian cancer. Am J Transl Res 2016;8:3266-73.
  37. Han J, Li J, Tang K, Zhang H, Guo B, Hou N, et al. miR-338-3p confers 5-fluorouracil resistance in p53 mutant colon cancer cells by targeting the mammalian target of rapamycin. Exp Cell Res 2017;360:328-36. https://doi.org/10.1016/j.yexcr.2017.09.023
  38. Liang Y, Xu X, Wang T, Li Y, You W, Fu J, et al. The EGFR/miR-338-3p/EYA2 axis controls breast tumor growth and lung metastasis. Cell Death Dis 2017;8:e2928. https://doi.org/10.1038/cddis.2017.325
  39. Sun NX, Ye C, Zhao Q, Zhang Q, Xu C, Wang SB, et al. Long noncoding RNA-EBIC promotes tumor cell invasion by binding to EZH2 and repressing E-cadherin in cervical cancer. PLoS One 2014;9:e100340. https://doi.org/10.1371/journal.pone.0100340
  40. Jin X, Chen X, Hu Y, Ying F, Zou R, Lin F, et al. LncRNA-TCONS_00026907 is involved in the progression and prognosis of cervical cancer through inhibiting miR-143-5p. Cancer Med 2017;6:1409-23. https://doi.org/10.1002/cam4.1084
  41. Frixa T, Donzelli S, Blandino G. Oncogenic microRNAs: key players in malignant transformation. Cancers (Basel) 2015;7:2466-85. https://doi.org/10.3390/cancers7040904
  42. Yang YK, Xi WY, Xi RX, Li JY, Li Q, Gao YE. MicroRNA-494 promotes cervical cancer proliferation through the regulation of PTEN. Oncol Rep 2015;33:2393-401. https://doi.org/10.3892/or.2015.3821
  43. Park S, Eom K, Kim J, Bang H, Wang HY, Ahn S, et al. MiR-9, miR-21, and miR-155 as potential biomarkers for HPV positive and negative cervical cancer. BMC Cancer 2017;17:658. https://doi.org/10.1186/s12885-017-3642-5
  44. Tang T, Wong HK, Gu W, Yu MY, To KF, Wang CC, et al. MicroRNA-182 plays an onco-miRNA role in cervical cancer. Gynecol Oncol 2013;129:199-208. https://doi.org/10.1016/j.ygyno.2012.12.043
  45. Xie H, Lee L, Scicluna P, Kavak E, Larsson C, Sandberg R, et al. Novel functions and targets of miR-944 in human cervical cancer cells. Int J Cancer 2015;136:E230-41. https://doi.org/10.1002/ijc.29160
  46. Su K, Wang CF, Zhang Y, Cai YJ, Zhang YY, Zhao Q. miR-940 upregulation contributes to human cervical cancer progression through p27 and PTEN inhibition. Int J Oncol 2017;50:1211-20. https://doi.org/10.3892/ijo.2017.3897
  47. Hao Z, Yang J, Wang C, Li Y, Zhang Y, Dong X, et al. MicroRNA-7 inhibits metastasis and invasion through targeting focal adhesion kinase in cervical cancer. Int J Clin Exp Med 2015;8:480-7.
  48. Gao YL, Zhao ZS, Zhang MY, Han LJ, Dong YJ, Xu B. Long noncoding RNA PVT1 facilitates cervical cancer progression via negative regulating of miR-424. Oncol Res 2017;25:1391-8. https://doi.org/10.3727/096504017X14881559833562
  49. Ma J, Fang B, Zeng F, Pang H, Zhang J, Shi Y, et al. Curcumin inhibits cell growth and invasion through up-regulation of miR-7 in pancreatic cancer cells. Toxicol Lett 2014;231:82-91. https://doi.org/10.1016/j.toxlet.2014.09.014

Cited by

  1. A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer vol.11, pp.9, 2019, https://doi.org/10.18632/aging.101933
  2. MicroRNA‐331‐3p inhibits epithelial‐mesenchymal transition by targeting ErbB2 and VAV2 through the Rac1/PAK1/β‐catenin axis in non‐small‐cell lung cancer vol.110, pp.6, 2019, https://doi.org/10.1111/cas.14014
  3. TMPO‐AS1 promotes cervical cancer progression by upregulating RAB14 via sponging miR‐577 vol.21, pp.11, 2018, https://doi.org/10.1002/jgm.3125
  4. LINC01133 promotes the progression of cervical cancer by sponging miR-4784 to up-regulate AHDC1 vol.20, pp.12, 2019, https://doi.org/10.1080/15384047.2019.1647058
  5. Integrative analysis of immune microenvironment-related CeRNA regulatory axis in gastric cancer vol.17, pp.4, 2018, https://doi.org/10.3934/mbe.2020219
  6. DARS-AS1 Knockdown Inhibits the Growth of Cervical Cancer Cells via Downregulating HMGB1 via Sponging miR-188-5p vol.19, pp.None, 2018, https://doi.org/10.1177/1533033820971669
  7. ASF1B promotes cervical cancer progression through stabilization of CDK9 vol.11, pp.8, 2020, https://doi.org/10.1038/s41419-020-02872-5
  8. E6 hijacks KDM5C/lnc_000231/miR‐497‐5p/CCNE1 axis to promote cervical cancer progression vol.24, pp.19, 2020, https://doi.org/10.1111/jcmm.15746
  9. LINP1 promotes the progression of cervical cancer by scaffolding EZH2, LSD1, and DNMT1 to inhibit the expression of KLF2 and PRSS8 vol.98, pp.5, 2020, https://doi.org/10.1139/bcb-2019-0446
  10. Long non-coding RNA BANCR mediates esophageal squamous cell carcinoma progression by regulating the IGF1R/Raf/MEK/ERK pathway via miR-338-3p vol.46, pp.4, 2018, https://doi.org/10.3892/ijmm.2020.4687
  11. Long non-coding RNA ARAP1-AS1 promotes the proliferation and migration in cervical cancer through epigenetic regulation of DUSP5 vol.21, pp.10, 2018, https://doi.org/10.1080/15384047.2020.1806641
  12. Long non-coding RNA JPX promotes gastric cancer progression by regulating CXCR6 and autophagy via inhibiting miR-197 vol.23, pp.1, 2018, https://doi.org/10.3892/mmr.2020.11698
  13. LINC00662 contributes to the progression and the radioresistance of cervical cancer by regulating miR‐497‐5p and CDC25A vol.38, pp.8, 2020, https://doi.org/10.1002/cbf.3580
  14. Long non-coding RNA SNHG22 facilitates the malignant phenotypes in triple-negative breast cancer via sponging miR-324-3p and upregulating SUDS3 vol.20, pp.None, 2020, https://doi.org/10.1186/s12935-020-01321-9
  15. LncRNA JPX promotes cervical cancer progression by modulating miR-25-3p/SOX4 axis vol.20, pp.None, 2020, https://doi.org/10.1186/s12935-020-01486-3
  16. Down-regulation of lncRNA UCA1 enhances radiosensitivity in prostate cancer by suppressing EIF4G1 expression via sponging miR-331-3p vol.20, pp.None, 2018, https://doi.org/10.1186/s12935-020-01538-8
  17. LINC01089 inhibits the progression of cervical cancer via inhibiting miR‐27a‐3p and increasing BTG2 vol.23, pp.1, 2018, https://doi.org/10.1002/jgm.3280
  18. Extracellular miRNAs for the Management of Barrett’s Esophagus and Esophageal Adenocarcinoma: A Systematic Review vol.10, pp.1, 2021, https://doi.org/10.3390/jcm10010117
  19. Long noncoding RNA MST1P2 promotes cervical cancer progression by sponging with microRNA miR-133b vol.12, pp.1, 2018, https://doi.org/10.1080/21655979.2021.1921550
  20. Long non-coding RNA AL139002.1 promotes gastric cancer development by sponging microRNA-490-3p to regulate Hepatitis A Virus Cellular Receptor 1 expression vol.12, pp.1, 2018, https://doi.org/10.1080/21655979.2021.1922329
  21. Circular RNA 0102049 suppresses the progression of osteosarcoma through modulating miR-520g-3p/PLK2 axis vol.12, pp.1, 2021, https://doi.org/10.1080/21655979.2021.1923259
  22. ceRNAs in Cancer: Mechanism and Functions in a Comprehensive Regulatory Network vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/4279039
  23. LINC00707 Regulates miR-382-5p/VEGFA Pathway to Enhance Cervical Cancer Progression vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/5524632
  24. Activation of FGD5-AS1 Promotes Progression of Cervical Cancer through Regulating BST2 to Inhibit Macrophage M1 Polarization vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/5857214
  25. Bioinformatics Analysis of ceRNA Network Related to Polycystic Ovarian Syndrome vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/9988347
  26. Construction of an mRNA-miRNA-lncRNA network prognostic for triple-negative breast cancer vol.13, pp.1, 2018, https://doi.org/10.18632/aging.202254
  27. Crosstalk Among circRNA/lncRNA, miRNA, and mRNA in Osteoarthritis vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.774370
  28. Roles of Non-Coding RNAs in Cervical Cancer Metastasis vol.11, pp.None, 2021, https://doi.org/10.3389/fonc.2021.646192
  29. YY1-inudced activation of lncRNA DUXAP8 promotes proliferation and suppresses apoptosis of triple negative breast cancer cells through upregulating SAPCD2 vol.22, pp.3, 2018, https://doi.org/10.1080/15384047.2021.1881201
  30. LncRNA FGD5-AS1 accelerates cell proliferation in pancreatic cancer by regulating miR-520a-3p/KIAA1522 axis vol.22, pp.3, 2018, https://doi.org/10.1080/15384047.2021.1883184
  31. LncRNA MSC-AS1 facilitates lung adenocarcinoma through sponging miR-33b-5p to up-regulate GPAM vol.99, pp.2, 2018, https://doi.org/10.1139/bcb-2020-0239
  32. LINC00662 modulates cervical cancer cell proliferation, invasion, and apoptosis via sponging miR‐103a‐3p and upregulating PDK4 vol.60, pp.6, 2018, https://doi.org/10.1002/mc.23294
  33. Non-coding RNAs in necroptosis, pyroptosis and ferroptosis in cancer metastasis vol.7, pp.1, 2018, https://doi.org/10.1038/s41420-021-00596-9
  34. LINC01133 promotes the progression of cervical cancer via regulating miR‐30a‐5p/FOXD1 vol.17, pp.3, 2021, https://doi.org/10.1111/ajco.13451
  35. Mechanism underlying long non‑coding RNA ILF3‑AS1‑mediated inhibition of cervical cancer cell proliferation, invasion and migration, and promotion of apoptosis vol.24, pp.2, 2021, https://doi.org/10.3892/mmr.2021.12193
  36. Low LINC01272 predicts poor prognosis of non‑small cell lung cancer and its biological function in tumor cells by inhibiting miR‑1303 vol.22, pp.3, 2018, https://doi.org/10.3892/ol.2021.12913
  37. LINC00997/MicroRNA 574-3p/CUL2 Promotes Cervical Cancer Development via Mitogen-Activated Protein Kinase Signaling vol.41, pp.8, 2021, https://doi.org/10.1128/mcb.00059-21
  38. Knockdown of LINC01123 inhibits cell viability, migration and invasion via miR‑361‑3p/TSPAN1 targeting in cervical cancer vol.22, pp.4, 2018, https://doi.org/10.3892/etm.2021.10618
  39. Construction of lncRNA-Mediated ceRNA Network for Investigating Immune Pathogenesis of Ischemic Stroke vol.58, pp.9, 2018, https://doi.org/10.1007/s12035-021-02426-6
  40. Long noncoding RNA HOXA-AS2 accelerates cervical cancer by the miR-509-3p/BTN3A1 axis vol.73, pp.10, 2018, https://doi.org/10.1093/jpp/rgab090
  41. LINC01234 aggravates cell growth and migration of triple‐negative breast cancer by activating the Wnt pathway vol.36, pp.10, 2021, https://doi.org/10.1002/tox.23318
  42. Knockdown of Long Non-coding RNA LINC00200 Inhibits Gastric Cancer Progression by Regulating miR-143-3p/SERPINE1 Axis vol.66, pp.10, 2018, https://doi.org/10.1007/s10620-020-06691-8
  43. Identification of LINC00665-miR-let-7b-CCNA2 competing endogenous RNA network associated with prognosis of lung adenocarcinoma vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-020-80662-x
  44. Identification of prognostic biomarkers related to the tumor microenvironment in thyroid carcinoma vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-90538-3
  45. LINC00242/miR-1-3p/ G6PD axis regulates Warburg effect and affects gastric cancer proliferation and apoptosis vol.27, pp.1, 2021, https://doi.org/10.1186/s10020-020-00259-y
  46. Circ_0055625 knockdown inhibits tumorigenesis and improves radiosensitivity by regulating miR-338-3p/MSI1 axis in colon cancer vol.19, pp.1, 2018, https://doi.org/10.1186/s12957-021-02234-1
  47. CircASAP1 promotes the development of cervical cancer through sponging miR-338-3p to upregulate RPP25 vol.33, pp.1, 2018, https://doi.org/10.1097/cad.0000000000001167