• 제목/요약/키워드: nitrogen and carbon source

검색결과 777건 처리시간 0.027초

Aureobasidium pullulans ATCC 9348의 Pullulan 생산과 균체 형태의 변화 (Pullulan Production and Morphological Change of Aureobasidium pullulans ATCC 9348)

  • 권오성;남희섭;이형재;신용철
    • 한국미생물·생명공학회지
    • /
    • 제22권6호
    • /
    • pp.565-570
    • /
    • 1994
  • The pullulan production and morphological change of Aureobasidium pullulans ATCC 9348 were investigated both in batch fermentation and in continuous fermentation. The best carbon source for pullulan production was sucrose among seven different carbon sources. The pullulan production of A. pullulans was increased with increasing the carbon to nitrogen ratio of the medium using sucrose as a carbon source. In batch fermentation, production of pullullan occurred following exhaustion of the nitrogen source from the medium. The continuous fermentation showed that the pullulan production was closely parallelled with cell growth and was most effective at a dilution rate of 0.06~0.07 hr$^{-1}$-. The ratio of yeast-like cells(blastospores) of A. pullulans increased with the increase of growth rate, and reached 100% over the growth rate of 0.07 hr$^{-1}$. The growth rate, within a certain range, affected not only on the cell morphology, but on the specific pullulan productivity of A. pullulans.

  • PDF

Cercospora kikuchii 균사생장에 필요한 질소원, 탄소원 및 이 진균에 의한 세균생장억제 (Nitrogen and carbon Sources for Mycelial Growath of Cercospora kikuchii and Inhibition of Bacterial Growth by the Fungus)

  • 박원목;이민재
    • 한국식물병리학회지
    • /
    • 제1권1호
    • /
    • pp.56-60
    • /
    • 1985
  • 본 실험은 질소 및 탄소원이 Cercospora kikuchii 균사생장에 미치는 영향과 여러 배양조건에서 생장한 C. kikuchii가 세균생장을 저지하는 정도를 알아보았다. C. kikuchii 균사생장에 적합한 질소원은 yeastextract였고, 탄소원으로는 sucrose, glucose, maltose, fructose를 첨가하였을 때 균사생장이 좋았다. C. kikuchii의 세균생장저지 실험에서 wild type은 pH 조건은 5.0에서, 질소원으로는 yeast-extract 또는 peptone.을 첨가하였을 때, 탄소원으로는 sucrose, maltose, glucose, fructose를 첨가한 배지에서 생장하였을 때 Erwinia carotovora와 Pseudomonas solanacearum의 생장을 크게 저지시켰다. 그러나 albino 돌연변이균주는 실허된 세균의 생장을 거의 저지시키지 못하였다.

  • PDF

Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion

  • Choi, Yongjun;Ryu, Jeongwon;Lee, Sang Rak
    • Journal of Animal Science and Technology
    • /
    • 제62권1호
    • /
    • pp.74-83
    • /
    • 2020
  • Organic waste used as a feedstock in the anaerobic digestion (AD), it includes carbon and nitrogen. Carbon and nitrogen have an effect on the various digestive characteristics during AD, however, the study is rare about those of the interaction. This study investigates the influence of carbon type and carbon to nitrogens (C/N ratios) on the AD characteristics of organic waste. Experimental treatments involved a combination of three carbon types with three C/N ratios. The AD tests were carried out using a 125-mL serum bottle at a constant temperature of 37℃ and moisture 95% for 18 days. Degradation pattern shows the difference among three-carbon treatments, the starch group was faster than other groups. Maximum methane production date was similar between starch (9.96 ± 0.05 day) and xylan group (10.0 ± 0.52 day), those of the cellulose group (14.6 ± 1.80 day) was slower than other groups (p < 0.05). The lag phase was only affected by the carbon type (p < 0.05). Ammonia nitrogen was mainly affected by nitrogen concentration regardless of carbon type (p < 0.05). This study showed that xylan is useful as feedstock in order to decrease the lag phase, and it showed that ammonia was independently affected by the nitrogen concentration.

Effect of Carbon Source Consumption Rate on Lincomycin Production from Streptomyces lincolnensis

  • Choi, Du-Bok;Cho, Ki-An
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.532-539
    • /
    • 2004
  • For efficient lincomycin production from Streptomyces lincolnensis L1245, various vegetable oils, natural nitrogen sources, and surfactants were investigated at the pilot-scale level in the flask. Olive oil as the sole carbon source was the most suitable one for producing lincomycin. When 20 g/lof olive oil was used, the lincomycin concentration and lipase activity reached 1.01 g/land 182 U/ml, respectively, after 5 days of culture. Among the various unsaturated fatty acids, when linolenic acid was used, the cell growth and lincomycin production were markedly decreased. On the other hand, when 0.2 g/l of oleic acid was added to the culture broth, the maximum lincomycin concentration was 1.0 g/l, which was about 1.7-fold higher than that obtained without the addition of oleic acid. Among the various natural nitrogen sources, pharmamedia or soybean meal was the most suitable nitrogen source. In particular, in the case of a mixture of 10 g/l of pharmamedia and soybean meal, 1.5 g/l of lincomycin concentration and 220 U/ml of lipase activity were obtained. When Span 180 was used as the surfactant, lincomycin production, lipase activity, and oil consumption increased. The correlation between the consumption rates of oil and lincomycin production in a culture using olive oil as the sole carbon source was also investigated. The lincomycin production depended on the consumption rate of olive oil. Using these results, fed-batch cultures for comparing the use of olive oil and starch as a conventional carbon source were carried out in a 5-1 fermentor. When olive oil was used as the sole carbon source, 34 g/l of olive oil was consumed after 7 days of culture. The maximum lincomycin concentration was 3.0 g/l, which was about 2.0-fold higher than that of starch medium after 7 days of culture. The product yield was 0.09 gig of consumed carbon source, which was about 3.0-fold higher than that of starch medium after 7 days of culture.

MMBR에서 탄소원 종류 및 질소 농도가 S. quadricauda의 P-EPS 및 Chl-a 생성에 미치는 영향 (Effects of carbon source and nitrogen concentration on the P-EPS and Chl-a production at the MMBR system)

  • 최윤정;심태석;황선진
    • 상하수도학회지
    • /
    • 제35권6호
    • /
    • pp.405-415
    • /
    • 2021
  • MMBR system has been suggested as a promising system to resolve harvesting problems induced from low settling efficiency of microalgae. And recently, a lot of research on reducing fouling at the MMBR system has investigated focused on EPS in many cases. EPS of microalgae mainly consists of polysaccharides and protein components, and is produced through photosynthesis and nitrogen-carbon metabolic pathways. Especially, P-EPS is one of major compounds which occur membrane fouling phenomenon, as its hydrophobic protein components cause floc formation and cake layer accumulation. And it is already known that almost every microalgae can metabolize P-EPS or Chl-a when nitrogen sources as a substrate is insufficient or exhausted situation. With the above backgrounds, uptake rates of P-EPS or Chl-a by Scenedesmus quadricauda according to the type of carbon source and nitrogen concentration were evaluated in order to verify correlation between carbon source vs P-EPS production, and indeed Scenedesmus quadricauda uses P-EPS or Chl-a when the amounts of nitrogen sourc es in the feed is not satisfied. As a result, it was shown that P-EPS and Chl-a production were increased proportional to nitrogen concentration under organic carbon condition. And especially, the amo unts of P-EPS and Chl-a in the cell were diminished with the nitrogen source becomes insufficient or exhausted. Because P-EPS accelerates fouling at the MMBR system, P-EPS degradation by Scenedesmus quadricauda in order to get nitrogen source may contribute to reducing fouling. About a affects of N-consumed Chl-a to the MMBR fouling, more survey is needed. On the contrary, considering the purpose of MMBR system of this study, i.e. harvesting useful high value microalgae efficiently feeding adequate industrial process wastewater, it seems like difficult to maintain satisfied metabolic activity and to harvest with high yield rate using nitrogen-poor MMBR feed.

Effects of Nitrogen Sources and C/N Ratios on the Lipid-Producing Potential of Chlorella sp. HQ

  • Zhan, Jingjing;Hong, Yu;Hu, Hongying
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1290-1302
    • /
    • 2016
  • Microalgae are being researched for their potential as attractive biofuel feedstock, particularly for their lipid production. For maximizing biofuel production, it is necessary to explore the effects of environmental factors on algal lipid-producing potential. In this study, the effects of nitrogen (N) sources (NO2-N, NO3-N, urea-N, NH4-N, and N-deficiency) and carbon-to-nitrogen ratios (C/N= 0, 1.0, 3.0, and 5.0) on algal lipid-producing potential of Chlorella sp. HQ were investigated. The results showed that for Chlorella growth and lipid accumulation potential, NO2-N was the best amongst the nitrogen sources, and NO3-N and urea-N also contributed to algal growth and lipid accumulation potential, but NH4-N and N-deficiency instead caused inhibitory effects. Moreover, the results indicated that algal lipid-producing potential was related to C/N ratios. With NO2-N treatment and carbon addition (C/N = 1.0, 3.0, and 5.0), total lipid yield was enhanced by 12.96-20.37%, but triacylglycerol (TAG) yields decreased by 25.52-94.31%. As for NO3-N treatment, carbon addition led to a 17.82-57.43%/25.86-82.67% reduction of total lipid/TAG yields. When NH4-N was used as the nitrogen source, total lipid/TAG yields were increased by 46.67-113.33%/28.99-74.76% with carbon addition. The total lipid/TAG yields of urea-N treatment varied with C/N ratios. Overall, the highest TAG yield (TAG yield: 38.75 ± 5.21 mg/l; TAG content: 44.16 ± 4.35%) was achieved under NO2-N treatment without carbon addition (C/N = 0), the condition that had merit for biofuel production.

Production of 1,5-Dihydroxy-3-Methoxy-7-Methylanthracene-9,10-Dione by Submerged Culture of Shiraia bambusicola

  • Cai, Yujie;Ding, Yanrui;Tao, Guanjun;Liao, Xiangru
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.322-327
    • /
    • 2008
  • 1,5-Dihydroxy-3-methoxy-7-methylanthracene-9,10-dione (shiraiarin) is a kind of antitumor and antibacterial anthraquinone, and was produced for the first time from the submerged fermentation of Shiraia bambusicola, as confirmed by ESI-MS and NMR. The production of shiraiarin was significantly influenced when varying the carbon source, and a high amount of shiraiarin was only achieved when using lactose. The production of shiraiarin was also stimulated when using $NaNO_3$ as the nitrogen source, whereas other nitrogen sources inhibited its production. Shiraiarin was formed during the stationary phase with a pH value higher than 8. The production of shiraiarin was inhibited by sporulation.

Genes for the Catabolism of Deoxyfructosyl Glutamine in pAtC58 Are Attributed to Utilization of Octopine in Agrobacterium tumefaciens Strain NT1

  • Baek, Chang-Ho;Park, Dae-Kyun;Lee, Ko-Eun;Hwang, Won;Kim, In-Hwang;Maeng, Jue-Son;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.822-828
    • /
    • 2004
  • Nopaline-type Agrobacterium tumefaciens strain C58 cannot utilize octopine (Oct) as the sole carbon and nitrogen sources. This strain harbors two plasmids; a virulent plasmid, pTiC58, and a megaplasmid, pAtC58. From strain NT1, which is a derivative of C58 harboring only pAtC58, we isolated spontaneous mutants that utilize Oct as the sole nitrogen source. These Oct-catabolizing mutants, however, could not utilize the opine as the sole carbon source. In contrast, strain UIA5, a plasmid-free derivative of C58, could not give rise to such mutants. The mutations isolated from NT1 were mapped to socR in pAtC58, which is a negative regulator of the soc operon responsible for the uptake and catabolism of an Amadori opine, deoxyfructosyl glutamine (Dfg). A derivative of UIA5 carrying a clone of the soc operon with a transposon inserted in socR also utilizes Oct as the sole nitrogen source. However, UIA5 harboring the operon with mutations in each of the structural genes in the soc operon, socA, B, C, and D, lost the ability to generate spontaneous Oct-utilizing mutants, suggesting that soc genes in pAtC58 are required for the utilization of Oct as a nitrogen source, and that derepressed expression of these genes allows cells to utilize Oct. In contrast, Oct-catabolizing mutants derived from C58, which grew using Oct as the sole nitrogen source, could also utilize the opine as the sole carbon source. These mutants did not carry any detectable mutations in socR or the region upstream to the gene in pAtC58, suggesting that mutations occurring elsewhere in the genome, most likely in pTiC58, allow the uptake and catabolism of the opine.

Rhizopus oryzae를 이용한 푸마르산 생산에 있어서 탄소원과 질소원의 영향

  • 김진남;위영중;류화원
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.402-405
    • /
    • 2001
  • The production of fumaric acid in shaken flask cultures by Rhizopus oryzae KCTC 6946 was studied. The effects of various carbon and nitrogen sources on fumaric acid production were investigated. The strain fermented starch (or glucose) and corn steep liquor (or polypepton) better than other carbon and nitrogen sources to fumaric acid. When C/N ratio of carbon and nitrogen source was 41.7, the concentration of fumaric acid produced with 2N NaGH as a neutralizing agent was more than 10 g/L after 3 days.

  • PDF

ALKANE의 微生物酸化의 反應條件과 炭素 및 窒素平衡 (Reaction Conditions and Carbon, Nitrogen Balance in the Course of Microbiological Oxidation of Alkane)

  • 박태원
    • 대한화학회지
    • /
    • 제13권2호
    • /
    • pp.187-193
    • /
    • 1969
  • As part of an extensive program on the microbiological oxidation of hydrocarbons, reaction conditions and nutrients consumption of candida lipolytica grown on alkane as carbon source were studied. For optimum growth of yeast, the conditions of pH 5, temperature $30^{\circ}C$, carbon number $C_{16}$& $C_{18}$aeration 25.6 1/l/hr, agitation 3000 r.p.m., hydrocarbon concentration 10% were obtained. Carbon and nitrogen balance related to these conditions were also investigated. In the course of this investigation, some significant effects of pH and carbon number of hydrocarbon variation were observed.

  • PDF