Browse > Article

Production of 1,5-Dihydroxy-3-Methoxy-7-Methylanthracene-9,10-Dione by Submerged Culture of Shiraia bambusicola  

Cai, Yujie (Key Laboratory of Industrial Biotechnology, Jiangnan University)
Ding, Yanrui (School of Information Technology, Jiangnan University)
Tao, Guanjun (Testing & Analysis Center, Jiangnan University)
Liao, Xiangru (School of Biotechnology, Jiangnan University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.2, 2008 , pp. 322-327 More about this Journal
Abstract
1,5-Dihydroxy-3-methoxy-7-methylanthracene-9,10-dione (shiraiarin) is a kind of antitumor and antibacterial anthraquinone, and was produced for the first time from the submerged fermentation of Shiraia bambusicola, as confirmed by ESI-MS and NMR. The production of shiraiarin was significantly influenced when varying the carbon source, and a high amount of shiraiarin was only achieved when using lactose. The production of shiraiarin was also stimulated when using $NaNO_3$ as the nitrogen source, whereas other nitrogen sources inhibited its production. Shiraiarin was formed during the stationary phase with a pH value higher than 8. The production of shiraiarin was inhibited by sporulation.
Keywords
Shiraia bambusicola; shiraiarin; carbon source; nitrogen source; pH;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Archer, D. B. and J. F. Peberdy. 1997. The molecular biology of secreted enzyme production by fungi. Crit. Rev. Biotechnol. 17: 273-306   DOI   ScienceOn
2 Brakhage, A. A. 1998. Molecular regulation of $\beta-lactam $ biosynthesis in filamentous fungi. Microbiol. Mol. Biol. R 62: 547-585
3 Cho, Y. J., J. P. Park, H. J. Hwang, S. W. Kim, J. W. Choi, and J. W. Yun. 2002. Production of red pigment by submerged culture of Paecilomyces sinclairii. Lett. Appl. Microbiol. 35: 195-202   DOI   ScienceOn
4 Demain, A. L. 1986. Regulation of secondary metabolism in fungi. Pure Appl. Chem. 58: 219-226   DOI
5 Julia, P., L. Martinkova, J. Lolinski, and F. Machek. 1994. Ethanol as substrate for pigment production by the fungus Monascus purpureus. Enzyme Microb. Tech. 16: 996-1001   DOI   ScienceOn
6 Ma, G. Y., S. I. Khan, M. R. Jacob, B. L. Tekwani, Z. Li, D. S. Pasco, L. A. Walker, and I. A. Khan. 2004. Antimicrobial and antileishmanial activities of hypocrellins A and B. Antimicrob. Agents Chemother. 48: 4450-4452   DOI   ScienceOn
7 Cole, R. B. 1997. Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation and Applications. Wiley, New York
8 Koyama, J., M. Inoue, I. Morita, N. Kobayashi, T. Osakai, H. Nishino, and H. Tokuda. 2006. Correlation between reduction potentials and inhibitory effects on Epstein-Barr virus activation by emodin derivatives. Cancer Lett. 241: 263-267   DOI   ScienceOn
9 Demain, A. L. 1996. Fungal secondary metabolism: Regulation and functions, pp. 233-254. In B. Sutton (ed.), A Century of Mycology. Cambridge University Press, Cambridge, U.S.A.
10 Grimm, L. H., S. Kelly, R. Krull, and D. C. Hempel. 2005. Morphology and productivity of filamentous fungi. Appl. Microbiol. Biotechnol. 69: 375-384   DOI   ScienceOn
11 Mizushima, T., S. Natori, and K. Sekimizu. 1993. Relaxation of supercoiled DNA associated with induction of heat shock proteins in Escherichia coli. Mol. Gen. Genet. 238: 1-5
12 Teich, L., K. S. Daub, V. Krugel, L. Nissler, R. Gebhardt, and K. Eger. 2004. Synthesis and biological evaluation of new derivatives of emodin. Bioorg. Med. Chem. 12: 5961-5971   DOI   ScienceOn
13 Falk, H. and G. Schoppel. 1991. A synthesis of emodin anthrone. Monatsh. Chem. 122: 739-744   DOI
14 Olsson, P. A. and A. Johansen. 2000. Lipid and fatty acid composition of hyphae and spores of arbuscular mycorrhizal fungi at different growth stages. Mycol. Res. 104: 429-434   DOI   ScienceOn
15 Hwang-Huei, W. and C. Jing-Gung. 1997. Emodin-induced inhibition of growth and DNA damage in the Helicobacter pylori. Curr. Microbiol. 35: 262-266   DOI   ScienceOn
16 Park, C., B. Bennion, I. E. Francois, K. K. Ferket, B. P. Cammue, K. Thevissen, and S. B. Levery. 2005. Neutral glycolipids of the filamentous fungus Neurospora crassa: Altered expression in plant defensin-resistant mutants. J. Lipid Res. 46: 759-768   DOI   ScienceOn
17 Adrio, J. L. and A. L. Demain. 2003. Fungal biotechnology. Int. Microbiol. 6: 191-199   DOI   ScienceOn
18 Alvo, A. M., R. A. Wilson, J. W. Bok, and N. P. Keller. 2002. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. R 66: 447-459   DOI   ScienceOn
19 Karem, K. and J. W. Foster. 1993. The influence of DNA topology on the environmental regulation of a pH-regulated locus in Salmonella typhimurium. Mol. Microbiol. 10: 75- 86   DOI   ScienceOn
20 Duran N., M. F. Teixeira, R. De Conti, and E. Esposito. 2002. Ecological-friendly pigments from fungi. Crit. Rev. Food. Sci. Nutr. 42: 53-66   DOI   ScienceOn
21 Kraus, G. A. and W. J. Zhang. 1995. The synthesis and biological evaluation of hypericin analogs. Bioorg. Med. Chem. Lett. 22: 2633-2636
22 Medentsev, A. G. and V. K. Akimenko. 1998. Naphthoquinone metabolites of the fungi. Phytochemistry 61: 935-959
23 Paterson, R. R. 2006. Ganoderma - a therapeutic fungal biofactory. Phytochemistry 67: 1985-2001   DOI   ScienceOn
24 Diwu, Z. J. 1995. Novel therapeutic and diagnostic applications of hypocrellins and hypericins. Photochem. Photobiol. 61: 529-539   DOI   ScienceOn
25 Higgins, C. F., C. J. Dorman, D. A. Stirling, L. Sutherland, I. R. Booth, G. May, and E. Bremer. 1988. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52: 569-584   DOI   ScienceOn
26 Berger, S. and S. Braun. 2004. 200 and More NMR Experiments: A Practical Course. Wiley-VCH, Weinheim
27 Kurobane, I., L. C. Vining, A. G. McInnes, and N. N. Gerber. 1980. Metabolites of Fusarium solani related to dihydrofusarubin. J. Antibiot. 39: 205-214
28 Denison, S. H. 2002. pH regulation of gene expression in fungi. Fungal. Genet. Biol. 29: 61-71   DOI   ScienceOn
29 Jain, S. C., R. Jain, R. A. Sharma, and F. Capasso. 1997. Pharmacological investigation of Cassia italica. J. Ethnopharmacol. 58: 135-142   DOI   ScienceOn
30 Kong, L. D., Y. Cai, W. W. Huang, C. H. Cheng, and R. X. Tan. 2000. Inhibition of xanthine oxidase by some Chinese medicinal plants used to treat gout. J. Ethnopharmacol. 73: 199-207   DOI   ScienceOn
31 Wu, H. M., X. F. Lao, Q. W. Wang, and R. R. Lu. 1989. The shiraiachromes: Novel fungal perylenequinone pigments from S. bambusicola. J. Nat. Prod. 52: 948-951   DOI
32 Demain, A. L. 1998. Induction of microbial secondary metabolism. Int. Microbiol. 1: 259-264
33 Kazmi, M. H., A. Malik, S. Hameed, N. Akhtar, and S. N. Ali. 1994. An anthraquinone derivative from Cassia italica. Phytochemistry 36: 761-763   DOI   ScienceOn
34 Kubicek, C. P. 1987. The role of the citric acid cycle in fungal organic acid fermentations. Biochem. Soc. Symp. 54: 113-126
35 Medentsev, A. G. and V. K. Akimenko. 1992. Mechanism of phytotoxic action of naphthoquinone pigments of the fungus Fusarium decemcellulare. Phytochemistry 31: 77-79   DOI
36 Falk, H., J. Meyer, and M. Oberreiter. 1993. A convenient semisynthetic route to hypericin. Monatsh. Chem. 124: 339-341   DOI   ScienceOn
37 Chen, W. S., Y. T. Chen, X. Y. Wan, E. Friedrichs, H. Puff, and E. Breitmaier. 1981. Structure of hypocrellin and its photooxidation product peroxyhypocrellin. Liebigs Ann. Chem. 10: 880-885