• 제목/요약/키워드: nitrogen accumulation

검색결과 387건 처리시간 0.027초

Roles of Azospirillum spp. Inoculation in Two Consecutive Growth of Maize Plants

  • Choi, Seung-Ju;Gadagi, Ravi;Park, Myung-Su;Yang, Jin-Chul;Sa, Tong-Min
    • 한국환경농학회지
    • /
    • 제21권1호
    • /
    • pp.74-79
    • /
    • 2002
  • Two consecutive green house experiments were carried out to examine the effect of Azospirillum spp. inoculation on growth, nitrogen and phosphorus accumulation in maize plants grown in pots. There were eight treatments including an uninoculated control and Azospirillum strains OAD-3, OAD-9, AZ-22, AZ-8, AZ-9, Azospirillum brasilense BR-11001 and Azospirillum lipoferum BR-11080. The inoculated plants showed higher values in each of the following measurements; plant height, total dry mass and nitrogen and phosphorus accumulation in shoot when compared to the uninoculated control plants in two consecutive experiments conducted in the same soil. Among Azospirillum strains, Azospirillum sp. OAD-3 inoculated plants showed higher nitrogen accumulation by 44.5% and 45.1%, total dry mass by 48.6% and 66.9% in two consecutive experiments respectively. The nitrogen concentration in the maize plants was not changed significantly in the first experiment, however it increased significantly in the second experiment due to Azospirillum inoculation. In addition, Azospirillum sp. OAD-9 and A. brasilense BR-11001 also proved to be effective with respect to total dry mass, total nitrogen accumulation and total phosphorus accumulation. The nitrogen concentrations in maize plants were increased in the second experiment due to Azospirillum inoculation.

연속회분반응기의 아질산 축적 특성과 질산화 및 탈질 미생물의 정량적 분포 연구 (Nitrite Accumulation Characteristics and Quantitative Analyses of Nitrifying and Denitrifying Bacteria in a Sequencing Batch Reactor)

  • 김동진;권현진;윤정이;차기철
    • 한국물환경학회지
    • /
    • 제24권3호
    • /
    • pp.383-390
    • /
    • 2008
  • Recently, the interests on economical nitrogen removal from wastewater are growing. As a method of the novel nitrogen removal technology, nitrogen removal via nitrite pathway by selective inhibition of free ammonia and free nitrous acid on nitrite oxidizing bacteria have been intensively studied. The inhibition effects of free ammonia and free nitrous acid are low when domestic wastewater is used, however, because of its relatively lower nitrogen concentration than the wastewater from industry and landfill, etc. In this study, a sequencing batch reactor (SBR) is proposed for nitrogen removal to investigate the effect of the low nitrogen concentration on nitrite accumulation. Nitrification efficiency reached almost 100% during the aerobic cycle and the maximum specific nitrification rate ($V_{max,nit}$) reached $17.8mg\;NH_4{^+}-N/g\;MLVSS{\bullet}h$. During the anoxic cycle, average denitrification efficiency reached 87% and the maximum specific denitrification rate ($V_{max,den}$) reached $9.8mg\;NO_3{^-}-N/g\;MLVSS{\bullet}h$. From the analysis the main reason of nitrite accumulation in the SBR was free nitrous acid rather than free ammonia. Nitrite accumulation increased with the decrease of organic content in the wastewater and the mechanism is not well understood yet. From the result of fluorescent in situ hybridization, the distribution of nitrite oxidizing bacteria was in equilibrium with ammonium oxidizing bacteria when nitrite accumulation did not occur.

일반관행 농법과 유기농법 배추, 무의 가식부위내 $NO-3^-$ (Differences on the Nitrate Accumulation in Edible Parts of Chinese Cabbage and Radish cultivated by Conventional and Organic Farming Method)

  • 손상목;오경석
    • 한국유기농업학회지
    • /
    • 제3권1호
    • /
    • pp.87-97
    • /
    • 1994
  • In the edible parts of chinese cabbage, the NO-3 accumulation was higher in the outer leaves than in the inner leaves and it was higher in the leaf midrib than in the leaf blade. In Radish, it was higher in the aerial part of the root than in the underground part of root. NO-3 accumulation in edible parts of chinese cabbage of organic farming fertilized with compost 8t/10a was about 4 times higher than those of conventional farming with recommended mineral nitrogen; and was similar to those of conventional farming fertilized with twice the mineral nitrogen rate. But, NO-3 accumulation in radish of organic farming with 8t/10a compost was lower than those of conventional farming with recommended mineral nitrogen. It showed NO-3 content in the edible parts of vegetables should be considered one of several parpmeters to judge a real safety vegetable to be certified by government.

  • PDF

질소시비수준이 생육단계별 수단그라스계 교잡종의 질산염 축적 및 수량에 미치는 영향 (Effect of Nitrogen Fertilization and Agronomic Stage on Nitrate Accumulation and Forage Yield of Sorghum Sudangrass Hybrid)

  • 윤창;최기춘
    • 한국초지조사료학회지
    • /
    • 제19권1호
    • /
    • pp.81-88
    • /
    • 1999
  • 본 시험은 질소비료의 다용(多用)이 사초내의 질산염 함량, 강우에 의한 사초내의 질산염 함량, 그리고 하루 중 사초내의 질산염 함량의 차이를 조사하여 반추가축의 질산염 중독 발생 예방과 적정 질소시비수준을 구명하기 위하여 수단그라스계 교잡종 중 Xtragraze II 1번초를 공시하여 1995년 6월부터 9월까지 익산대학 동물사육장 시험포에서 실시하였다. 시비수준은 ha당 연간 질소 200kg, 400kg 및 600kg으로 하고, 인산과 칼리비료는 200kg씩 사용하였으며 얻어진 결과는 다음과 같다. 질산태질소 함량은 생육시기의 진전에 따라 감소하였는데, 200kg구에서는 신장기초까지, 그리고 400kg 이상에서는 전생육기간 동안 중독위험수준을 초과하였다. 강우 후 사초의 질산태질소 함량은 성장기에는 일시적으로 증가하는 경향이 있지만, 생육말기나 출수기 이후에는 거의 영향이 없었다. 사초의 하루 중 질산태질소 함량은 오전이 오후보다 비교적 더 높은 경향이었다. 질산염중독으로부터 비교적 안전한 질소시비수준은 $200kg{\cdot}N/ha/year$ 이하로 나타났다.

  • PDF

Effects of Fertilization and Co-Application of Compost Tea on Fruit Growth and Accumulation of Anthocyanin in Omija (Schisandra Chinensis Baillon)

  • Seo, Young-Jin;Kim, Jong-Su;Kim, Jae-Cheol;Kim, Young-Kuk;Ahn, Young-Sup;Cha, Seon-Woo
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.547-552
    • /
    • 2014
  • This study was conducted to evaluate the influence of fertilization on characteristics of growth and accumulation of anthocyanin in fruit of Omija (Schisandra chinensis Baillon). Nitrogen supply mainly affected growth of fruit and the anthocyanin content in Omija respective of vegetative growth steps. The anthocyanin content in fruit was significantly low in high N supply and non-fertilization. The conjunctive supply of nitrogen and compost tea resulted in a higher anthocyanin content of fruit, total nitrogen content of leaf, and nitrate in soil. This result implies that nitrogen supply to Omija plant, affects the accumulation patterns of anthocyanin in different ways, e.g. it delays the quantitative biosynthesis at low nitrogen supply during fruit maturation or enhances anthocyanin degradation during the final maturation steps.

Effects of Nitrogen and Oxygen Supply on Production of $Poly-{\beta}-Hydroxybutyrate$ in Azotobacter chroococcum

  • Lee, In-Young;Stegantseva, Ellen-M.;Savenkova, Ludmila;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권2호
    • /
    • pp.100-104
    • /
    • 1995
  • Production of $poly-{\beta}-hydroxybutyrate$ (PHB) in a strain of Azotobacter chroococcum, a nitrogen-fixing bacteria, was investigated at various levels of nitrogen and oxygen. Feeding nitrogen source increased both cell growth and PHB accumulation. Oxygen supply appeared to be one of the most important operating parameters for PHB production. Both cell growth and PHB accumulation increased with the sufficient supply of air in the fed-batch fermentation of the strain. However, it was also noted that keeping the oxygen level under limited condition was critical to achieve high PHB productivity. A high titer of PHB (52 g/l) with a high cellular content (60%) was obtained after 48 hr of fed-batch operation by controlling the oxygen supply. Dual limitation of nitrogen and oxygen did not further increase the PHB accumulation probably due to the greater demand for reducing power and ATP for nitrogen fixation.

  • PDF

Nutrient dynamics in montane wetlands, emphasizing the relationship between cellulose decomposition and water chemistry

  • Kim, Jae Geun
    • 한국습지학회지
    • /
    • 제7권4호
    • /
    • pp.33-42
    • /
    • 2005
  • Wetlands often function as a nutrient sink. It is well known that increased input of nutrient increases the primary productivity but it is not well understood what is the fate of produced biomass in wetland ecosystem. Water and sediment quality, decomposition rate of cellulose, and sediment accumulation rate in 11 montane marshes in northern Sierra Nevada, California were analyzed to trace the effect of nitrogen and phosphorus content in water on nutrient dynamics. Concentrations of ammonium, nitrate, soluble reactive phosphorus (SRP) in water were in the range of 27 to 607, 8 to 73, and 6 to 109 ppb, respectively. Concentrations of ammonium, calcium, magnesium, sodium, and potassium in water were the highest in Markleeville, which has been impacted by animal farming. Nitrate and SRP concentrations in water were the highest in Snow Creek, which has been impacted by human residence and a golf course. Cellulose decomposition rates ranged from 4 to 75 % per 90 days and the highest values were measured in Snow Creek. Concentrations of total carbon, nitrogen, and phosphorus in sediment ranged from 8.0 to 42.8, 0.5 to 3.0, and 0.076 to 0.162 %, respectively. Accumulation rates of carbon, nitrogen, and phosphorus fluctuated between 32.7 to 97.1, 2.4 to 9.0, and 0.08 to $1.14gm^{-2}yr{-1}$, respectively. Accumulation rates of carbon and nitrogen were highest in Markleeville and that of phosphorus was highest in Lake Van Norden. Correlation analysis showed that decay rate is correlated with ammonium, nitrate, and SRP in water. There was no correlation between element content in sediment and water quality. Nitrogen accumulation rate was correlated with ammonium in water. These results showed that element accumulation rates in montane wetland ecosystems are determined by decomposition rate rather than nutrient input. This study stresses a need for eco-physiological researches on the response of microbial community to increased nutrient input and environmental change because the microbial community is responsible for the decomposition process.

  • PDF

Performance of MPS Bacterial Inoculation in Two Consecutive Growth of Maize Plants

  • Park, Myung-Su;Gadagi, Ravi;Singvilay, Olayvanh;Kim, Chung-Woo;Chung, Hee-Kyung;Ahn, Ki-Sup;Sa, Tong-Min
    • 한국환경농학회지
    • /
    • 제20권5호
    • /
    • pp.335-339
    • /
    • 2001
  • Two successive in vitro experiments were carried out to examine the effect of MPS bacterial inoculation on growth, and nitrogen and phosphorus accumulation of maize plants under greenhouse condition in the same soil. There were four treatments, uninoculated control and three phosphate solubilizing bacterial inoculations, viz., Pseudomonas striata, Burkholderia cepacia and Serratia marcescens. The inoculated plants showed the higher plant height, total dry mass, nitrogen and phosphorus accumulation when compared to uninoculated control plants in both experiments. In the combined data analysis from two experiments, the plants inoculated with P. striata and B. cepacia showed significantly higher plant height, total dry mass and P accumulation when compared to S. marcescens inoculated plant and uninoculated control plants. The P. striata and B. cepacia inoculation enhanced total dry matter accumulation by 14% and phosphorus accumulation by 25% over the uninoculated control plants. The nitrogen and phosphorus concentration of maize plants were also increased due to MPS bacterial inoculation, however, the effect was not significant.

  • PDF

Enhancing Astaxanthin Accumulation in Haematococcus pluvialis by Coupled Light Intensity and Nitrogen Starvation in Column Photobioreactors

  • Zhang, Wen-wen;Zhou, Xue-fei;Zhang, Ya-lei;Cheng, Peng-fei;Ma, Rui;Cheng, Wen-long;Chu, Hua-qiang
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.2019-2028
    • /
    • 2018
  • Natural astaxanthin mainly derives from a microalgae producer, Haematococcus pluvialis. The induction of nitrogen starvation and high light intensity is particularly significant for boosting astaxanthin production. However, the different responses to light intensity and nitrogen starvation needed to be analyzed for biomass growth and astaxanthin accumulation. The results showed that the highest level of astaxanthin production was achieved in nitrogen starvation, and was 1.64 times higher than the control group at 11 days. With regard to the optimization of light intensity utilization, it was at $200{\mu}mo/m^2/s$ under nitrogen starvation that the highest astaxanthin productivity per light intensity was achieved. In addition, both high light intensity and a nitrogen source had significant effects on multiple indicators. For example, high light intensity had a greater significant effect than a nitrogen source on biomass dry weight, astaxanthin yield and astaxanthin productivity; in contrast, nitrogen starvation was more beneficial for enhancing astaxanthin content per dry weight biomass. The data indicate that high light intensity synergizes with nitrogen starvation to stimulate the biosynthesis of astaxanthin.

사초용유채(Brassica napus ssp. oleifera)의 생육기간중 건물 및 조단백질 축적과 엽내 Carbon 및 Nitrogen 함량의 변화 (Evolution of Carbon and Nitrogen Concentrations in the Leaves as Related to Dry Matter and Crude Protein Accumulation of Forage Rape(Brassica napus ssp. oleifera))

  • 정우진;김병호;김태환
    • 한국초지조사료학회지
    • /
    • 제13권1호
    • /
    • pp.58-65
    • /
    • 1993
  • 가을에 파종한 사초용유채(Brassica napus Subsp. oleifera cv. Swiss)의 생육기간 동안의 질소대사와 관련하여 건물수량 및 조단백질의 축적정도를 규명하기 위해. 생육기간중 수량 및 조단백질 함량을 측정하고, 엽내 carbon, nitrogen 및 hydrogen 함량을 비교. 분석하였다. 월동기인 '91년 11월 7일부터 '92년 2월 4일 동안의 생초량 및 건물량의 축적은 매우 적었으며, 엽내 C함량은 건물 1g당 382mg에서 435mg으로 증가하였으나. 질소 및 조단백질 함량은 55mg에서 46mg 및 345mg에서 289mg으로 각각 감소하였다. 월동후 춘계 재생초기(2월 3일부터 3월 30일까지) 동안 생초수량의 점차적인 증가에 따라 엽내 C함량은 일당 37mg의 감소를 보였으나, 월동기 동안 감소 되었던 N함량은 다소 증가를 보였다. 영양생장기(3월 31일)부터 추태기인 4월 16일까지 일당 개체당 생초 및 건물축적량은 각각 5.2g 및 0.5g으로 전 생육기간중 가장 높았는데, 엽내의 C/N 의 정상적인 균형을 유지하며 직선적인 증가를 보였고, 조단백질 함량 역시 지속적인 축적이 있었다. 이 시기 이후 개화최성기('92년 5월 19일)까지 엽내 C, N, H 및 조단백질 함량은 공히 유의적인 감소를 보였는데, 특히 N과 조단백질 함량이 추태기에 비해 각각 45.7% 및 46%의 감소로 뚜렷하였다 이들 결과들은 월동기나 월동 후 초기재생 기간중 식물체내 C/N 균형의 현저한 변화를 가져오며, 춘계 영양생장기에서 추태기 동안(3월 31일부터 4월 16일까지)가장 원활한 물질대사에 따라 엽내의 건물 및 조단백질 축적이 왕성하다는 것을 보여준다. 따라서 예취이용의 적기는 추태기이며 생육기간 중 추비적기는 춘계 영양생장기 이전으로 사료된다.

  • PDF