• Title/Summary/Keyword: nitric oxide synthase activity

Search Result 679, Processing Time 0.032 seconds

Ionomycin Recovers Taurine Transporter Activity in Cyclosporin A Treated macrophages

  • Kim, Ha-Won;Lee, Eun-Jin;Kim, Won-Bae;Hyun, Jin -Won;Kim, Byung-Kak
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.4
    • /
    • pp.265-269
    • /
    • 1999
  • Taurine is a major $\beta$-amino acid in various tissues. Taurine transporter (TAUT) is responsible for the transportation of taurine in the cell. The transporter is affected by various stimuli to maintain its cell volume. Macrophage cell volume varies in its activated states. In our experiment, it was found that the murine macrophage cell line, RAW264.7, expressed TAUT protein in its membrane. Its transportation activities could be blocked by a $\beta$-amino acid such as $\beta$-alanine, but not by $\alpha$-amino acids in this cell line. When assessed in RAW264.7 under the influence of immunosuppressive reagents, the activity of the TAUT was decreased by the treatment of rapamycin (RM) or cyclosporin A (CsA). However when ionomycin (IM) was added to this system, TAUT activity was recovered only in CsA-treated cells in a concentration-dependent manner. In order to inhibit the voltage gated {TEX}$Ca^{+2}${/TEX} channel, calmidazolium was added to the RAW264.7 cell line. Treatment of the cell with calmidazolium completely blocked TAUT. Furthermore, addition of IM to this system recovered the activity of TAUT again. When we added phorbol myristate acetate (PMA) to the cell line, secretion of nitric oxide (NO) was increased 4-fold and the TAUT activity was decreased 5-fold. However, the addition of N-nitro L-arginine methyl ester (L-NAME), an inducible NO synthase (iNOS) inhibitor, to the PMA-treated cells, resulted in the recovery of TAUT activity. These results showed that the activity of TAUT was sensitive to the intracellular concentrations of both {TEX}$Ca^{+2}${/TEX} and NO.

  • PDF

Enhancement of Skin Antioxidant and Anti-Inflammatory Potentials of Agastache rugosa Leaf Extract by Probiotic Bacterial Fermentation in Human Epidermal Keratinocytes (프로바이오틱 유산균 발효에 의한 배초향 잎 추출물의 피부 항산화 및 항염증 활성 증대)

  • Lim, Hye-Won;Lee, Yoonjin;Huang, Yu-Hua;Yoon, Ji-Young;Lee, Su Hee;Kim, Kyunghoon;Lim, Chang-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • This study aimed to investigate the effects of probiotic fermentation by comparing the skin antioxidant and anti-inflammatory properties of non-fermented (ARE) and fermented (ARE-F) hot water extracts of Agastache rugosa leaves. ARE-F was obtained via ARE fermentation using Lactobacillus rhamnosus HK-9. In vitro, anti-inflammatory properties were evaluated by analyzing the levels of nitric oxide (NO), reactive oxygen species (ROS), and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated HaCaT keratinocytes. In vitro antiradical activity was measured using 2,2-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Attenuation of LPS-stimulated NO (p < 0.01), ROS (p < 0.001) and iNOS (p < 0.05) levels by ARE-F was significantly stronger than that by ARE in HaCaT keratinocytes. However, no differences were observed between the DPPH radical scavenging activities of ARE and ARE-F. ARE-F possesses enhanced skin antioxidant and anti-inflammatory properties, suggesting that probiotic bacterial fermentation can be considered an effective tool for augmenting some pharmacological properties of A. rugosa leaves. In brief, the skin antioxidant and anti-inflammatory potentials of A. rugosa leaf extract are augmented by the fermentation with L. rhamnosus HK-9, a probiotic bacterium.

Inhibitory effect of Angelica gigas extract powder on induced inflammatory cytokines in rats osteoarthritis (참당귀 추출분말의 골관절염 흰쥐의 염증성 사이토카인류의 억제활성)

  • Kwon, Jin-Hwan;Han, Min-Seok;Lee, Bu-Min;Lee, Yong-Moon
    • Analytical Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.260-269
    • /
    • 2015
  • The protective effects of extract powder of Angelica gigas on the degeneration of the articular cartilage in rats was investigated with monosodium iodoacetate (MIA)-induced osteoarthritis, The treatment of high concentration (50 μg/mL) of Angelica gigas effectively inhibited nitric oxide (NO) production induced by interleukin-1α (IL-1α) without any cytotoxicity. Specifically, mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were dose dependently reduced by extract powder of Angelica gigas. Importantly, mRNA expression in articular cartilage of inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were clearly reduced. The inflammatory cytokines in blood were also reduced as well. These results suggested that the protective effects on the degeneration of the articular cartilage was derived from the inhibitory effects of mRNA and protein expression of tested inflammatory cytokines which is linked to prevent the degradation of proteoglycan (PG), the main matrix content in articular cartilage. Meanwhile, the 2 hrs incubation of decursin, a major compound of extract powder in rat whole blood rapidely converted decursin into decursinol which shows string anti-inflammatory activity. The coverted decursinol was detected after 8 hrs in whole blood by LC-MS/MS. Conclusively, the inhibitory effects of inflammatory cytokines production in osteoarthritis may be derived from the production of decursinol, which performs against inflammatroy cytokines like TNF-α, IL-1β, and IL-6.

Anti-inflammatory Effects of Ethanol Extract of Chinese Medicinal Plants in Yanjin on LPS-stimulated RAW 264.7 Macrophages (LPS로 자극한 RAW 264.7 세포에서 중국 연변에 자생하는 약용 식물 에탄올 추출물의 항염증 효과 연구)

  • Park, Yea-Jin;Seo, Jong-Hwan;Gil, Tae-Young;Cheon, Se-Yun;Piao, Ren-Zhe;Lee, Sang-Woo;Cha, Yun-Yeop;An, Hyo-Jin
    • The Korea Journal of Herbology
    • /
    • v.33 no.6
    • /
    • pp.71-78
    • /
    • 2018
  • Objectives : This study was fulfilled to investigate nominee materials as anti-inflammatory agent from ethanol extract of Chinese medicinal plants in Yanjin. Among the 20 candidates, we selected most effective one, the ethanol extract of Cicuta virosa L. (CVL). The mechanism underlying the anti-inflammatory effects of CVL is not clearly identified as yet. Accordingly, we clarified the anti-inflammatory effects of CVL and its underlying molecular mechanisms in LPS-stimulated RAW 264.7 macrophages. Methods : RAW264.7 macrophages were incubated with CVL (12.5, 25, or $50{\mu}M$) and/or lipopolysaccharide (LPS) ($1{\mu}g/m{\ell}$). Cytotoxicity was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay and the level of nitric oxide (NO) production was measured with Griess reagent. The prostaglandin $E_2$ ($PGE_2$) production was measured with enzyme immunoassay kits and the protein expression of inducible nitric oxide synthase (iNOS) was determined using Western blot analysis. Results : Among the 20 ethanol extract of Chinese medicinal plants of Yanjin tested, CVL significantly reduced the production of NO in a dose-dependent manner via inhibition the protein expressions of iNOS without cytotoxicity on the LPS-stimulated RAW 264.7 macrophages. In addition, CVL also effectively declined the production of $PGE_2$ in LPS-simulated RAW 264.7 macrophages. Conclusions : Taken together, these data presented in this study demonstrate that CVL possesses anti-inflammatory activity by suppressing the production of pro-inflammatory mediators NO and $PGE_2$, and pro-inflammatory protein iNOS expression in LPS-stimulated RAW 264.7 macrophages.

Enhancement of Anti-inflammatory Activity by Fermentation of Sargassum siliquanstrum (꽈배기모자반의 발효를 통한 항염증 활성의 증진)

  • Lee, Sol-Ji;Lee, Dong-Geun;Kim, Mihyang;Kong, Chang-Suk;Yu, Ki-Hwan;Kim, Yuck-Young;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.318-324
    • /
    • 2016
  • This study was aimed to verify anti-inflammatory activity of fermented Sargassum siliquanstrum with lactic acid bacteria. Anti-inflammatory activities were compared by measuring the amount of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and suppressive effect on inducible nitric oxide synthase (iNOS) expression in stably transfected RAW 264.7 cells. Inhibitory activities of NO production and iNOS expression were measured after confirmation of NO radical scavenging activities. Fermentation increased NO radical scavenging activities from 7.6% to 15.2% compared to non-fermented condition, and fermentation with Lactobacillus sp. SH-1 was the most efficient. Fermentation without algal debris showed better NO radical scavenging activities than that with debris. Fermentation with Lactobacillus sp. SH-1 also showed the highest NO production inhibitory activity (64.1%) in LPS-stimulated RAW 264.7 cells. LPS-induced iNOS expression was diminished to 28.6, 35.6, 49.4 and 58.5 at 50, 100, 500 and 1,000 μg/ml, respectively, by fermentation with Lactobacillus sp. SH-1. According to MTT assay, fermented S. siliquanstrum did not influence the cell viability at all concentrations tested, meaning no or less cytotoxicity. These results suggest that S. siliquanstrum has NO radical scavenging activity and anti-inflammatory activity. Thus biological activities of S. siliquanstrum were upgraded by fermentation, which could be used for the development of functional foods.

Antioxidant and Anti-inflammatory Activities of Butanol Extract of Melaleuca leucadendron L.

  • Surh, Jeong-Hee;Yun, Jung-Mi
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • Melaleuca leucadendron L. has been used as a tranquilizing, sedating, evil-dispelling and pain-relieving agent. We examined the effects of M. leucadendron L. extracts on oxidative stress and inflammation. M. leucadendron L. was extracted with methanol (MeOH) and then fractionated with chloroform ($CHCl_3$) and butanol (BuOH). Antioxidant activity of the MeOH extract and BuOH fraction were higher than that of both ${\alpha}$-tocopherol and butyrated hydroxytoluene (BHT). Total phenol content in the extracts of M. leucadendron L., especially the BuOH fraction, well correlated with the antioxidant activity. The anti-inflammatory activity of BuOH extracts were investigated by lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production, and cyclooxygenase-2 (COX-2) expression in RAW 264.7 macrophages. The BuOH fraction significantly inhibited LPS-induced NO and $PGE_2$ production. Furthermore, BuOH extract of M. leucadendron L. inhibited the expression of COX-2 and iNOS protein without an appreciable cytotoxic effect on RAW264.7 cells. The extract of M. leucadendron L. also suppressed the phosphorylation of inhibitor ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$) and its degradation associated with nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activation. Furthermore, BuOH fraction inhibited LPS-induced NF-${\kappa}B$ transcriptional activity in a dose-dependent manner. These results suggested that M. leucadendron L. could be useful as a natural antioxidant and anti-inflammatory resource.

Anti-Inflammatory, Antioxidant, Anti-Angiogenic and Skin Whitening Activities of Phryma leptostachya var. asiatica Hara Extract

  • Jung, Hyun-Joo;Cho, Young-Wook;Lim, Hye-Won;Choi, Hojin;Ji, Dam-Jung;Lim, Chang-Jin
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.72-78
    • /
    • 2013
  • This work aimed to assess some pharmacological activities of P. leptostachya var. asiatica Hara. The dried roots of P. leptostachya var. asiatica Hara were extracted with 70% ethanol to generate the powdered extract, named PLE. Anti-angiogenic activity was detected using chick chorioallantoic membrane (CAM) assay. In vitro anti-inflammatory activity was evaluated via analyzing nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Antioxidant activity was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay and reactive oxygen species (ROS) level in the stimulated macrophage cells. Matrix metalloproteinase-9 (MMP-9) and -2 (MMP-2) activities in the culture media were detected using zymography. PLE exhibits an anti-angiogenic activity in the CAM assay, and displays an inhibitory action on the generation of NO in the LPS-stimulated macrophage cells. In the stimulated macrophage cells, it is able to diminish the enhanced ROS level. It can potently scavenge the stable DPPH free radical. It suppresses the induction of iNOS and COX-2 and the enhanced MMP-9 activity in the stimulated macrophage cells. Both monooxygenase and oxidase activities of tyrosinase were strongly inhibited by PLE. Taken together, the dried roots of P. leptostachya var. asiatica Hara possess anti-angiogenic, anti-inflammatory, antioxidant and skin whitening activities, which might partly provide its therapeutic efficacy in traditional medicine.

Inhibitory Effect of Eurya emarginata on the Production of Pro-inflammatory Cytokines in Murine Macrophage RAW264.7 (Murine Macrophage RAW 264.7 세포에서 우묵사스레피에 의한 염증성 사이토카인 억제효과)

  • 박수영;이혜자;현은아;문지영;앙홍철;이남호;김세재;강희경;유은숙
    • YAKHAK HOEJI
    • /
    • v.47 no.5
    • /
    • pp.311-318
    • /
    • 2003
  • Eurya emarginata (Thunb.) Makino (Theaceae) is distributed in coastal areas of island. The leaves of Eurya are used in the traditional medicine of the coastal areas of jeju island with the aim of diuresis or to treat ulcers. Nevertheless, there are few reports on the biological activity and constituents of E. emarginata. In this study, we investigated the pharmacological activity of the solvent extracts of E. emarginata on the several inflammatory markers (TNF-$\alpha$, IL-1$\beta$, IL-6, NO, iNOS and COX-2). Also we examined the antioxidizing effect of the solvent extracts by determination of DPPH radical-scavenging activity. Among the solvent fractions, EtOAc and BuOH extracts showed potent radical scavenging activity (RC$_{50}$=10.9 and 12.7 respectively). The subtractions of EF 5-4-6-3-2 and BF 1 potentially inhibited the mRNA expression of pro-inflammatory cytokines (IL-1$\beta$, IL-6 and TNF-$\alpha$) at the concentration of 100 $\mu\textrm{g}$/mι. Also the fractions inhibited the mRNA expression of pro-inflammatory cytokines (IL-1$\beta$, IL-6 and TNF-$\alpha$) and protein expression of iNOS and COX-2 at the concentration of 100 $\mu\textrm{g}$/mι. And then, the inhibition of iNOS was correlated with the decrease of nitrite level. These results suggest that E. emarginata may have anti-inflammatory activity through the inhibition of pro-inflammatory cytokines, iNOS and COX-2.2.

Inhibitory Effect of Oyster Conchioloin on Pro-inflammatory Mediator in Lipopolysaccharide;Activated Raw 264.7 Cells (모려로부터 추출된 conchiolin의 LPS로 유도된 RAW 264.7 세포에서의 항염증 효과)

  • Park, Sang-Mi;Zhao, Rong Jie;Lee, Jong-Rok;Lee, Chul-Won;Kim, Hak-Ju;Kwon, Young-Kyu;Kim, Sang-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.878-883
    • /
    • 2008
  • Conchiolin is a complex protein which is secreted by the mollusc's outer epithelium to be the organic basis of mollusc shell. This study is to investigate a potential anti-inflammatory activity of conchiolin of oyster shell (COS). We tested the effects of COS on the lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin E2 (PGE 2) in a murine macrophage cell line, RAW 264.7. COS inhibited production of NO and PGE2 in a dose dependent manner and also decreased the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-6 (IL-6). These results suggest that COS can inhibit production of pro-inflammatory mediators and might be a useful source to treat inflammation.

Serotonins of safflower seeds play a key role in anti-inflammatory effect in lipopolysaccharide-stimulated RAW 264.7 macrophages

  • Kim, Dong-Hee;Moon, Yong-Sun;Park, Tae-Soon;Son, Jun-Ho
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.364-369
    • /
    • 2015
  • Safflower (Carthamus tinctorius) seeds are wellknown traditional oriental medicines that have long been used for the remedies of blood stasis and bone formation in east Asia. In this study, ethyl acetate (EtOAc) was used for extraction of the main chemical compounds from C. tinctorius seeds. Four major compounds were identified, acacetin, cosmosiin, N-feruloyl serotonin and N-(p-coumaroyl) serotonin. Each compound was evaluated for its inhibitory activity against the inflammatory process of macrophages. All compounds significantly inhibited production of lipopolysaccharide (LPS)-stimulated nitric oxide (NO) and pro-inflammatory cytokines. The protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were dramatically decreased by serotonins in a dose-dependent manner in LPS-stimulated RAW 264.7 macrophages. These results suggest that serotonin derivatives from safflower seeds may reduce inflammation-related diseases.