Inhibitory Effect of Eurya emarginata on the Production of Pro-inflammatory Cytokines in Murine Macrophage RAW264.7

Murine Macrophage RAW 264.7 세포에서 우묵사스레피에 의한 염증성 사이토카인 억제효과

  • 박수영 (제주대학교 의과대학 약리학교실) ;
  • 이혜자 (제주대학교 의과대학 약리학교실) ;
  • 현은아 (제주대학교 자연과학대학 생명과학과) ;
  • 문지영 (제주대학교 자연과학대학 화학과) ;
  • 앙홍철 (제주대학교 자연과학대학 화학과) ;
  • 이남호 (제주대학교 자연과학대학 화학과) ;
  • 김세재 (제주대학교 자연과학대학 생명과학) ;
  • 강희경 (제주대학교 의과대학 약리학교실) ;
  • 유은숙 (제주대학교 의과대학 약리학교실)
  • Published : 2003.10.01

Abstract

Eurya emarginata (Thunb.) Makino (Theaceae) is distributed in coastal areas of island. The leaves of Eurya are used in the traditional medicine of the coastal areas of jeju island with the aim of diuresis or to treat ulcers. Nevertheless, there are few reports on the biological activity and constituents of E. emarginata. In this study, we investigated the pharmacological activity of the solvent extracts of E. emarginata on the several inflammatory markers (TNF-$\alpha$, IL-1$\beta$, IL-6, NO, iNOS and COX-2). Also we examined the antioxidizing effect of the solvent extracts by determination of DPPH radical-scavenging activity. Among the solvent fractions, EtOAc and BuOH extracts showed potent radical scavenging activity (RC$_{50}$=10.9 and 12.7 respectively). The subtractions of EF 5-4-6-3-2 and BF 1 potentially inhibited the mRNA expression of pro-inflammatory cytokines (IL-1$\beta$, IL-6 and TNF-$\alpha$) at the concentration of 100 $\mu\textrm{g}$/mι. Also the fractions inhibited the mRNA expression of pro-inflammatory cytokines (IL-1$\beta$, IL-6 and TNF-$\alpha$) and protein expression of iNOS and COX-2 at the concentration of 100 $\mu\textrm{g}$/mι. And then, the inhibition of iNOS was correlated with the decrease of nitrite level. These results suggest that E. emarginata may have anti-inflammatory activity through the inhibition of pro-inflammatory cytokines, iNOS and COX-2.2.

Keywords

References

  1. Immunology: An introdution inflammation(2nd ed.) Tizard,I.R.
  2. Pathophysiology v.47 Kim.C.J
  3. Ann. Rheum. Dis. v.34 Human arthritis applied to animal models. T owards a better therapy Willoughby,D.A. https://doi.org/10.1136/ard.34.6.471
  4. J. Endotoxin Res. v.7 IC14, a CD14 specific monoclonal antibody is a potential treatment for patients with severe sepsis Axtelle,T.;Pribble,J. https://doi.org/10.1177/09680519010070040201
  5. Immun. Infekt. v.21 The endotoxin recepter CD14 Schutt,C.;Schumann,R.
  6. J. Leukoc. Biol. v.59 Novel insight into molecular mechanism of endotoxin shock; biochemical analysis of LPS receptor signaling in a cell-free system targeting NF-kapperB and regulation of cytokine production/action through beta2 integrin in vivo Mukis,N.;Ishikawa,Y.;Ikeda,N.;Fujioka,N.Watanabe,S.;Kuno,K.(et al.)
  7. Vutr. Boles v.32 The role of bacterial endotoxins, receptors and cytokines in the pathogenesis of septic (endotoxin) shock Lazarov,S.;Balutsov,M.;Ianev,E.
  8. Crit. Rev. Immunol. v.20 Cationic antimicrobial peptides and their multifunctional role in the immune system Scott,M.G.;Hancock,R.E.
  9. Nat. New. Biol. v.23 Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like durgs Vane,J.A.
  10. FASEB J. v.5 Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment Funk,C.D.;Frunk,L.B.;Kennedy,M.E.;Pong,A.S.;Fitzgerald,G.A. https://doi.org/10.1096/fasebj.5.9.1907252
  11. Pharmacol. Rev. v.43 Nitric oxide: physiology. pathophysiology, and pharmacology Moncada,S.;Palmer,R.M.;Higgs,E.A.
  12. FASEB J. v.6 Nitric oxide as a secretory product of mammalian cells Nathan,C https://doi.org/10.1096/fasebj.6.12.1381691
  13. Br. J. Dematol. v.32 Tumour necrosis factor alphais pro-inflammatory in nomal human skin and modulates cutaneous adhesion molecule expression Groves,R.W.;Allen,M.H.;Ross,E.L.;Baker,J.N.W.N.
  14. J. Am. Acad. Dermatol. v.24 Tumour necrosis factor Wakefield,P.E.;James,W.D.;Samlaska,C.P.;Mettzes,M.S. https://doi.org/10.1016/0190-9622(91)70102-8
  15. J. Exp. Med. v.173 Tumour necrosis factor is critical mediators in hepten - induced irritant and contact hyper sensitivity reaction Piguet,P.F.;Grau,G.E.;Houser,C.;Vassalli,P. https://doi.org/10.1084/jem.173.3.673
  16. 한국의 자원식물(Ⅲ) 김태정
  17. Nature v.181 Antioxidant determinations by the use of a stable free radical Blois,M.S.
  18. Adv. Phamacol. B Colorectal cancer and nonsteroidal anti-inflammatory drugs Smally,W.;Dubois,R.N.
  19. Gastroenterology v.113 Nonst eroidal anti-inflammatory drugs and colorectal cancer: evaolving cancepts of the eir chemopreventive actions Schiff,S.J.;Rigas,B. https://doi.org/10.1016/S0016-5085(97)99999-6
  20. N. Engl. L. Med. v.339 Aberrant crypt foci of the colon as precursors of adernoma and cancer Takayma,T.;Katsuki,S.;Takahashi,Y.;Ohi,M.;Nojiri,S.;Sakamaki,S.;Kato.J.;Kogawa,K.;Miyake,H.;Niilsu,Y. https://doi.org/10.1056/NEJM199810293391803
  21. Nature v.344 Hydroperoxide in plants exposed to ozone mediates air pollution damage to alkene emitters Hewitt,N.;Kok,G.;Fall,R. https://doi.org/10.1038/344056a0
  22. Plants Physiol. v.108 Localization and characterization of peroxidases in the mitochondria of chilling acclimated maize seedlings Tottenpudi,K.P.;Narc,D.A.;Cecil,R.S. https://doi.org/10.1104/pp.108.4.1597
  23. J. Amer. Oil. Chem. Soc. v.75 Free radicals oxidative stress and antioxdants in human health and disease Aruoma,O.I. https://doi.org/10.1007/s11746-998-0032-9
  24. Kor, J. Plant. Res. v.9 The effect of cultivated environments in the antioxidant enzyme activities of codonpsis lanceolata Jeong,H.J.
  25. Food Sci. and Biotechnol. v.2 Food antioxidants Hahm,T.S.;King,D.L.;Min,D.B.