• Title/Summary/Keyword: nitric oxide synthase activity

Search Result 671, Processing Time 0.03 seconds

Analysis of Essential oil, Quantification of Six Glycosides, and Nitric Oxide Synthase Inhibition Activity in Caryopteris incana

  • Nugroho, Agung;Lee, Sang Kook;Kim, Donghwa;Choi, Jae Sue;Park, Kyoung-Sik;Song, Byong-Min;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.24 no.3
    • /
    • pp.181-188
    • /
    • 2018
  • Caryopteris incana (Verbenaceae) has been used to treat cough, arthritis, and eczema in Oriental medicine. The two fractions ($CHCl_3-$ and BuOH fractions) and the essential oil of the plant material were subjected to the inducible nitric oxide synthase (iNOS) assay. The $IC_{50}$ of the $CHCl_3$ fraction and the essential oil on LPS-induced macrophage RAW 264.7 cells were $16.4{\mu}g/mL$ and $23.08{\mu}g/mL$, respectively. On gas chromatography (GC)-mass spectroscopy (MS) analysis, twenty-five components representing 85.5% amount of total essential oil were identified. On the chromatogram, three main substances, trans-pinocarveol, cis-citral, and pinocarvone, occupied 18.8%, 13.5% and 18.37% of total peak area. Furthermore, by HPLC-UV analysis, six compounds including one iridoid (8-O-acetylharpagide)- and five phenylethanoid glycosides (caryopteroside, acteoside, phlinoside A, 6-O-caffeoylphlinoside, and leucosceptoside A) isolated from the BuOH fraction were quantified. The content of six compounds were shown as the following order: caryopteroside (162.35 mg/g) > 8-O-acetylharpagide (93.28 mg/g) > 6-O-caffeoylphlinoside (28.15 mg/g) > phlinoside (22.60 mg/g) > leucosceptoside A (16.87 mg) > acteoside (7.05 mg/g).

Pathological Lesions and Inducible Nitric Oxide Synthase Expressions in the Liver of Mice Experimentally Infected with Clonorchis sinensis

  • Yang, Qing-Li;Shen, Ji-Qing;Xue, Yan;Cheng, Xiao-Bing;Jiang, Zhi-Hua;Yang, Yi-Chao;Chen, Ying-Dan;Zhou, Xiao-Nong
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.6
    • /
    • pp.777-783
    • /
    • 2015
  • The nitric oxide (NO) formation and intrinsic nitrosation may be involved in the possible mechanisms of liver fluke-associated carcinogenesis. We still do not know much about the responses of inducible NO synthase (iNOS) induced by Clonorchis sinensis infection. This study was conducted to explore the pathological lesions and iNOS expressions in the liver of mice with different infection intensity levels of C. sinensis. Extensive periductal inflammatory cell infiltration, bile duct hyperplasia, and fibrosis were commonly observed during the infection. The different pathological responses in liver tissues strongly correlated with the infection intensity of C. sinensis. Massive acute spotty necrosis occurred in the liver parenchyma after a severe infection. The iNOS activity in liver tissues increased, and iNOS-expressing cells with morphological differences were observed after a moderate or severe infection. The iNOS-expressing cells in liver tissues had multiple origins.

Methanol Extracts of Stewartia koreana Inhibit Cyclooxygenase-2 (COX-2) and Inducible Nitric Oxide Synthase (iNOS) Gene Expression by Blocking NF-κB Transactivation in LPS-activated RAW 264.7 Cells

  • Lee, Tae Hoon;Kwak, Han Bok;Kim, Hong-Hee;Lee, Zang Hee;Chung, Dae Kyun;Baek, Nam-In;Kim, Jiyoung
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.398-404
    • /
    • 2007
  • Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) are involved in various pathophysiological processes such as inflammation and carcinogenesis. In a search for inhibitors of COX-2 and iNOS production we found that extracts of Stewartia koreana strongly inhibited NO and $PGE_2$ production in LPS-treated macrophage RAW 264.7 cells. We have now shown that the mRNA and protein levels of iNOS and COX-2 are reduced by the Stewartia koreana extract (SKE). SKE inhibited expression of an NF-${\kappa}B$ reporter gene in response to LPS, and gel mobility shift assays revealed that SKE reduced NF-${\kappa}B$ DNA-binding activity. The extract also inhibited LPS-induced phosphorylation of $I{\kappa}B-{\alpha}$ and nuclear translocation of p65. Administration of the extract reduced the symptoms of arthritis in a collagen-induced arthritic mouse model. These results indicate that Stewartia extracts contain potentially useful agents for preventing and treating inflammatory diseases.

Macrophage Activation by an Acidic Polysaccharide Isolated from Angelica Sinensis (Oliv.) Diels

  • Yang, Xingbin;Zhao, Yan;Wang, Haifang;Mei, Qibing
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.636-643
    • /
    • 2007
  • This study was designed to identify and characterize the mechanism of macrophage activation by AAP, an acidic polysaccharide fraction isolated from the roots of Angelica sinensis (Oliv.) Diels. As a result, AAP significantly enhanced nitric oxide (NO) production and cellular lysosomal enzyme activity in murine peritoneal macrophages in vitro and in vivo. Furthermore, L-NAME, a specific inhibitor of inducible nitric oxide synthase (iNOS), effectively suppressed AAP-induced NO generation in macrophages, indicating that AAP stimulated macrophages to produce NO through the induction of iNOS gene expression and the result was further confirmed by the experiment of the increase of AAP-induced iNOS transcription in a dose-dependent manner. To further investigate, AAP was shown to strongly augment toll-like receptor 4 (TLR4) mRNA expression and the pretreatment of macrophages with anti-TLR4 antibody significantly blocked AAP-induced NO release and the increase of iNOS activity, and tumor necrosis factor-$\alpha$ (TNF-$\alpha$) secretion.

Anti-angiogenic, Anti-inflammatory and Anti-nociceptive Activities of Vanillin in ICR Mice

  • Lim, Eun-Ju;Kang, Hyun-Jung;Jung, Hyun-Joo;Song, Yun-Seon;Lim, Chang-Jin;Park, Eun-Hee
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.132-136
    • /
    • 2008
  • The current study aimed to assess some novel pharmacological activities of vanillin. Vanillin inhibited the chick chorioallantoic membrane (CAM) angiogenesis. Vanillin had anti-inflammatory activity using the acetic acid-induced permeability model in mice. Anti-nociceptive activity of vanillin was shown using the acetic acid-induced writhing test in mice. Vanillin inhibited production of nitric oxide (NO) and induction of inducible nitric oxide synthase (iNOS) but not cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-activated RAW264.7 macrophages. Vanillin decreased the level of iNOS mRNA in the LPS-activated macrophages. Taken together, these results suggest that vanillin can have anti-angiogenic, anti-inflammatory and anti-nociceptive activities in ICR Mice.

Experimental study of Gagam-Cheongsang BangPungTang on the anti-inflammatory effects (가감청상방풍탕(加減淸上防風湯)의 항염증 효과에 대한 실험적 연구)

  • Seo, Eun-Sung;Hwang, Chung-Yeon;Kim, Nam-Kwen
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.2
    • /
    • pp.54-70
    • /
    • 2008
  • Background and Object : This study was carried out to investigate the effects of GCSBPT (Gagam-Cheongsang BangPungTang) on the in vitro and in vivo anti-inflammatory reactions. Methods : Vascular permeability and Cyclooxygenase inhibition assay are examined in vitro and nitric oxide inhibition assay, radical scavenging activity test, $TNF-{\alpha}$, COX-2 inhibition test are examined in vivo. Results : GCSBPT showed inhibitory effects on vascular permeability and leukocyte migration in animal test. In cyclooxygenase 2 inhibition assay, an ethanol extract of GCSBPT inhibited prostaglandin E2 generation at a concentration of $10{\mu}g/ml$. Among the herbal ingredients of GCSBPT, ethanol extracts of Nepetae Spica exhibited potent inhibitory activities. Ethanol extract of GCSBPT inhibited the release of nitric oxide and the gene expression of inducible nitric oxide synthase in RAW 246.7 cells stimulated by lipopolysaccharide. Ethanol extract of GCSBPT exhibited radical scavenging activity of 54% at $100{\mu}g/ml$. Among the herbal ingredients of GCSBPT. Conclusions : According to the above results, I expected that GCSBPT was a potent anti-inflammatory prescription.

  • PDF

Leaves of Raphanus sativus L. Shows Anti-Inflammatory Activity in LPS-Stimulated Macrophages via Suppression of COX-2 and iNOS Expression.

  • Park, Hye-Jin;Song, Minjung
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.1
    • /
    • pp.50-55
    • /
    • 2017
  • Raphanus sativus L. (RS) is a cruciferous vegetable that is widely consumed in Korea. The anticancer activity of leaves of RS (RSL) extract has been investigated; however, no studies focused on its anti-inflammatory effects. Therefore, the aim of the current study was to evaluate the anti-inflammatory effects of RSL extract. In brief, RSL powder was fractionated into n-hexane, chloroform, ethyl acetate, n-butanol, and water-soluble fractions. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were treated with each fraction for initial screening. It was found that the chloroform fraction significantly inhibited nitric oxide release in LPS-stimulated RAW264.7 cells with a half maximal inhibitory concentration value of $196{\mu}g/mL$. In addition, the mRNA and protein expression levels of inducible nitric oxide synthase, measured using reverse transcriptase-polymerase chain reaction and western blotting, respectively, were reduced in a concentration-dependent manner. Moreover, the inflammatory cyclooxygenase-2 enzyme expression decreased. Furthermore, the expression of nuclear factor-kappa B ($NF-{\kappa}B$), the key regulator of the transcriptional activation of the inflammatory cytokine genes, was reduced by the RSL chloroform fraction. Therefore, the results of our study suggest that RSL exhibits anti-inflammatory effects in LPS-stimulated macrophages via $NF-{\kappa}B$ inactivation.

N-nitroso-N-methylurea and N-nitroso-N-ethylurea Decrease in Nitric Oxide Production in Human Malignant Keratinocytes

  • Moon, Ki-Young
    • Biomedical Science Letters
    • /
    • v.24 no.1
    • /
    • pp.50-54
    • /
    • 2018
  • N-nitroso-N-methylurea (NMU) and N-nitroso-N-ethylurea (NEU), direct alkylating chemical mutagens and carcinogens, are shown to be the upregulators of cellular $NF-{\kappa}B$, regulating various genes that mediate tumorigenesis and carcinogenesis. Nitric oxide (NO), a toxic reactive radical gas, has been known to induce programmed cell death or apoptosis in various cells. Therefore, the assessment of NO production was examined to elucidate the possible contribution of NO release to the chemical carcinogenic potency of NMU and NEU in human skin cells. NMU and NEU did not alter the NO production, but they caused a significant downregulation of the NO generation on lipopolysaccharide (LPS)-induced NO production at concentrations ranging from $2{\sim}5{\mu}M$. The degree of downregulation of NO by NMU and NEU decreased up to 15% and 20%, respectively, compared to the control. These results demonstrate that the LPS-inducible keratinocytes NO synthase is involved in modulating carcinogenic potency by NMU and NEU, and the regulation of the cellular $NF-{\kappa}B$ activity by NMU and NEU is negatively correlated with the level of LPS-induced NO production in human skin cells. The findings of this study suggest the hypothesis that NMU and NEU-induced carcinogenesis may be associated with the downregulation of NO production, and the inducible NO may play an important role in NMU and NEU-induced carcinogenicity in human epidermal keratinocytes.

Anti-Inflammatory Effects of Water Chestnut Extract on Cytokine Responses via Nuclear Factor-κB-signaling Pathway

  • Kim, Bora;Kim, Jin Eun;Choi, Byung-Kook;Kim, Hyun-Soo
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.90-97
    • /
    • 2015
  • Water chestnut (Trapa japonica Flerov.) is an annual aquatic plant. In the present study, we showed that the treatment of water chestnut extracted with boiling water resulted in a significant increase 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and decrease the intracellular $H_2O_2$-induced accumulation of reactive oxygen species. In addition, water chestnut extract (WCE) inhibited lipopolysaccharide (LPS)-induced nitric oxide production and suppressed mRNA and protein expression of the inducible nitric oxide synthase gene. The cytokine array results showed that WCE inhibited inflammatory cytokine secretion. Also, WCE reduced tumor necrosis factor-${\alpha}$- and interleukin-6-induced nuclear factor-${\kappa}B$ activity. Furthermore, during sodium lauryl sulfate (SLS)-induced irritation of human skin, WCE reduced SLS-induced skin erythema and improved barrier regeneration. These results indicate that WCE may be a promising topical anti-inflammatory agent.

Constituents of Pyrus pyrifolia with Inhibitory Activity on the NO Production and the Expression of iNOS and COX-2 in Macrophages and Microglia

  • Yoo, Ji-Hye;Yang, Ki-Sook
    • Natural Product Sciences
    • /
    • v.18 no.3
    • /
    • pp.183-189
    • /
    • 2012
  • It is well known that inflammation is associated with neurodegenerative disorders, including Alzheimer' disease, Parkinson's disease and ischemia. Nitric oxide (NO), a pro-inflammatory mediator, is produced by inducible NO synthase (iNOS) in microglia as well as macrophages and appears to account for neurodegeneration. In this study, we aimed to isolate NO inhibitors from Pyrus pyrifolia by activity guided purification. As a result, we identified daucosterol and ${\beta}$-sitosterol, which have not been isolated from this plant before. This article also describes NO inhibitory activities of the methanol extract of Pyrus pyrifolia fruit and the isolated compounds from this, which are lupeol, betulin, betulinic acid, ${\beta}$-sitosterol and daucosterol, in LPS-activated RAW 264.7 and BV2 cell lines. Western blot analysis was performed to clarify the underlying mechanism of NO inhibition in the two cell lines.