Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.080

Anti-Inflammatory Effects of Water Chestnut Extract on Cytokine Responses via Nuclear Factor-κB-signaling Pathway  

Kim, Bora (Skin & Bio Research, Ellead Co., Ltd.)
Kim, Jin Eun (R&D Center of Skin Science and Cosmetics, Enprani Co., Ltd.)
Choi, Byung-Kook (SN Biotech Co. Ltd.)
Kim, Hyun-Soo (Department of Food Science and Industry, Jungwon University)
Publication Information
Biomolecules & Therapeutics / v.23, no.1, 2015 , pp. 90-97 More about this Journal
Abstract
Water chestnut (Trapa japonica Flerov.) is an annual aquatic plant. In the present study, we showed that the treatment of water chestnut extracted with boiling water resulted in a significant increase 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and decrease the intracellular $H_2O_2$-induced accumulation of reactive oxygen species. In addition, water chestnut extract (WCE) inhibited lipopolysaccharide (LPS)-induced nitric oxide production and suppressed mRNA and protein expression of the inducible nitric oxide synthase gene. The cytokine array results showed that WCE inhibited inflammatory cytokine secretion. Also, WCE reduced tumor necrosis factor-${\alpha}$- and interleukin-6-induced nuclear factor-${\kappa}B$ activity. Furthermore, during sodium lauryl sulfate (SLS)-induced irritation of human skin, WCE reduced SLS-induced skin erythema and improved barrier regeneration. These results indicate that WCE may be a promising topical anti-inflammatory agent.
Keywords
Trapa japonica Flerov.; Water chestnut; Anti-inflammatory effect; Cytokine; NF-${\kappa}B$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alderton, W. K., Cooper, C. E. and Knowles, R. G. (2001) Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357, 593-615.   DOI
2 Babich, H. and Babich, J. P. (1997) Sodium lauryl sulfate and triclosan: in vitro cytotoxicity studies with gingival cells. Toxicol. Lett. 91, 189-196.   DOI
3 Baumann, H. and Gauldie, J. (1994) The acute phase response. Immunol. Today 15, 74-80.   DOI
4 Chuang, C. Y., Liu, H. C., Wu, L. C., Chen, C. Y., Chang, J. T. and Hsu, S. L. (2010) Gallic acid induces apoptosis of lung fibroblasts via a reactive oxygen species-dependent ataxia telangiectasia mutatedp53 activation pathway. J. Agric. Food Chem. 58, 2943-2951.   DOI
5 Dokka, S., Shi, X., Leonard, S., Wang, L., Castranova, V. and Rojanasakul, Y. (2001) Interleukin-10-mediated inhibition of free radical generation in macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, L1196-1202.   DOI
6 Froebe, C. L., Simion, F. A., Rhein, L. D., Cagan, R. H. and Kligman, A. (1990) Stratum corneum lipid removal by surfactants: relation to in vivo irritation. Dermatologica 181, 277-283.   DOI
7 Gutowska-Owsiak, D. and Ogg, G. S. (2013) Cytokine regulation of the epidermal barrier. Clin. Exp. Allergy 43, 586-598.
8 Hoque, A. and Arima, S. (2002) Overcoming phenolic accumulation during callus induction and in vitro organogenesis in water chestnut (Trapa Japonica Flerov). In Vitro Cell. Dev. Biol. Plant 38, 342-346.   DOI
9 Johar, D., Roth, J. C., Bay, G. H., Walker, J. N., Kroczak, T. J. and Los, M. (2004) Inflammatory response, reactive oxygen species, programmed (necrotic-like and apoptotic) cell death and cancer. Rocz. Akad. Med. Bialymst. 49, 31-39.
10 Kang, O. H., Chae, H. S., Choi, J. G., Oh, Y. C., Lee, Y. S., Kim, J. H., Seung, M. J., Jang, H. J., Bae, K. H., Lee, J. H., Shin, D. W. and Kwon, D. Y. (2008) Ent-pimara-8(14), 15-dien-19-oic acid isolated from the roots of Aralia cordata inhibits induction of inflammatory mediators by blocking NF-kappaB activation and mitogen-activated protein kinase pathways. Eur. J. Pharmacol. 601, 179-185.   DOI
11 Kroes, B. H., van den Berg, A. J., van Ufford, H. C. Q., van Dijk, H. and Labadie, R. P. (1992) Anti-inflammatory activity of gallic acid. Planta Med. 58, 499-504.   DOI
12 Lee, C. H and Maibach, H. I. (1995) The sodium lauryl sulfate model: an overview. Contact Dermatitis 33, 1-7.   DOI
13 Kumar, K. J., Vani, M. G., Wang, S. Y., Liao, J. W., Hsu, L. S., Yang, H. L. and Hseu, Y. C. (2013) In vitro and in vivo studies disclosed the depigmenting effects of gallic acid: a novel skin lightening agent for hyperpigmentary skin diseases. Biofactors 39, 259-270.   DOI
14 Kwon, H, S., Park, J. H., Kim, D. H., Kim, Y. H., Shin, H. K. and Kim, J. K. (2008) Licochalcone A isolated from licorice suppresses lipopolysaccharide- stimulated inflammatory reactions in RAW264.7 cells and endotoxin shock in mice. J. Mol. Med. 86, 1287-1295.   DOI
15 Latorre, D., Puddu, P., Valenti, P. and Gessani, S. (2010) Reciprocal interactions between lactoferrin and bacterial endotoxins and their role in the regulation of the immune response. Toxins 2, 54-68.   DOI
16 Makarov, S. S. (2000) NF-kappaB as a therapeutic target in chronic inflammation: recent advances. Mol. Med. Today 6, 441-448.   DOI
17 Mariathasan, S. and Monack, D. M. (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat. Rev. Immunol. 7, 31-40.   DOI
18 Murakami, A. and Ohigashi, H. (2007) Targeting NOX, iNOS and COX- 2 in inflammatory cells: chemoprevention using food phytochemicals. Int. J. Cancer 121, 2357-2363.   DOI
19 Mosser, D. M. and Edwards, J. P. (2008) Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958-969.   DOI
20 Noel, W., Raes, G., Hassanzadeh Ghassabeh, G., De Baetselier, P. and Beschin, A. (2004) Alternatively activated macrophages during parasite infections. Trends Parasitol. 20, 126-133.   DOI   ScienceOn
21 Su, T. R., Lin, J. J., Tsai, C. C., Huang, T. K., Yang, Z. Y., Wu, M. O., Zheng, Y. Q., Su, C. C. and Wu, Y. J. (2013) Inhibition of melanogenesis by gallic acid: possible involvment of the PI3K/Akt, MEK/ ERK and Wnt/b-Catenin signaling pathways in B16F10 cells. Int. J. Mol. Sci. 14, 20443-20458.   DOI
22 Oppenheim, J. J., Zachariae, C. O., Mukaida, N. and Matsushima, K. (1991) Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu. Rev. Immunol. 9, 617-648.   DOI
23 Sawada, E., Yoshida, N., Sugiura, A. and Imokawa, G. (2012) Th1 cytokines accentuate but Th2 cytokines attenuate ceramide production in the stratum corneum of human epidermal equivalents: an implication for the disrupted barrier mechanism in atopic dermatitis. J. Dermatol. Sci. 68, 25-35.   DOI
24 Schall, T. J. (1991) Biology of the RANTES/SIS cytokine family. Cytokine 3, 165-183.   DOI
25 Van Snick, J. (1990) Interleukin-6: an overview. Annu. Rev. Immunol. 8, 253-278.   DOI
26 Wang, C. C., Choy, C. S., Liu, Y. H., Cheah, K. P., Li, J. S., Wang, J. T., Yu, W. Y., Lin, C. W., Cheng, H. W. and Hu, C. M. (2011) Protective effect of dried safflower petal aqueous extract and its main constituent, carthamus yellow, against lipopolysaccharide-induced inflammation in RAW264.7 macrophages. J. Sci. Food Agric. 91, 218-225.   DOI
27 Yamamoto, Y. and Gaynor, R. B. (2001) Role of the NF-kappaB pathway in the pathogenesis of human disease states. Curr. Mol. Med. 1, 287-296.   DOI
28 Yoon, W. J., Ham, Y. M., Kim, S. S., Yoo, B. B., Moon, J. Y., Baik, J. S., Lee, N. H. and Hyun, C. G. (2009) Suppression of pro-inflammatory cytokines, iNOS, and COX-2 expression by brown algae Sargassum micracanthum in RAW 264.7 macrophages. EurAsia. J. Biosci. 3, 130-143.
29 Zedler, S. and Faist, E. (2006) The impact of endogenous triggers on trauma-associated inflammation. Curr. Opin. Crit. Care 12, 595-601.   DOI
30 You, Y., Duan, X., Wei, X., Su, X., Zhao, M., Sun, J., Ruenroengklin, N. and Jiang, Y. (2007) Identification of major phenolic compounds of Chinese water chestnut and their antioxidant activity. Molecules 12, 842-852.   DOI