• 제목/요약/키워드: nitric oxide

검색결과 4,135건 처리시간 0.041초

Effect of Various Herbal Extracts on Nitric Oxide Production in Lipopolysaccharide-induced Murine Peritoneal Macrophages

  • Ko, Young-Kwon;Seo, Dong-Wan;Ahn, Seong-Hoon;Bae, Gyu-Un;Yoon, Jong-Woo;Hong, Sung-Youl;Lee, Hoi-Young;Han, Jeung-Whan;Lee, Hyang-Woo
    • Biomolecules & Therapeutics
    • /
    • 제7권3호
    • /
    • pp.210-215
    • /
    • 1999
  • Nitric oxide (NO) can mediate numerous physiological processes, including vasodilation, neurotransmission, cytotoxicity, secretion and inflammatory response. The regulation of NO production by inducible NO synthase (iNOS) is considered to be the possible target of the development of anti-inflammatory agent, based on the observation that NO can activate cyclooxygenase, which results in the synthesis of prostaglandins. In an effort to screen new inhibitor of NO production from about 352 species of herbal extracts, we found 9 species with 50% or more inhibitory effect on NO production. Especially, the dose-dependent inhibition of NO production in lipopolysaccharide-treated macrophages by two of the herbal extracts (Artemisiae asiaticae Herba and Saussureae Radix) was due to the decrease in the expression of iNOS.

  • PDF

Effect of Ginsenoside on Basal and Nitro-L-Arginine Suppressed Nitric Oxide Production in Rat Kidney

  • Kim, Hye-Young;Han, Sang-Won
    • Biomolecules & Therapeutics
    • /
    • 제2권2호
    • /
    • pp.131-135
    • /
    • 1994
  • The effect of ginsenoside (GS) from Panax ginseng on basal and nitro-L-arginine suppressed nitric oxide (NO) production was studied in rat kidney. NO production was determined by conversion to [$^{14C}$]=L-citrulline from [$^{14C}$]-L-arginine both in whole kidney and three renal segments; glomerulus, cortex excluding glomerulus (cortex-) and medulla. Nitro-L-arginine (total dose of 30 mg/kg/3 days, i.p.) significantly reduced NO production in whole kidney, which was prevented by GS pretreatment (30 mg/kg/3 days, i.p.). Relative high dose of GS (120 mg/kg/4 days, i.p..) selectively increased NO production in glomerulus and cortex-. Protein content, on wet weight basis, in cortex- and glomerular DNA content were significantly reduced by GS. Our results confirm the existence of constitutive nitric oxide synthase in kidney and it seems that target nephron segment for volume expansion due to GS'NO-mediated vasodilation and for NO production stimulated by GS is cortex including glomerulus.lus.

  • PDF

Elicitor-treated extracts of Saururus chinensis inhibit the expression of inducible nitric oxide synthase and cyclooxygenase-2 enzyme expression in Raw cells for suppression of inflammation

  • Lee, Eun-Ho;Park, Hye-Jin;Kim, Dong-Hee;Jung, Hee-Young;Kang, In-Kyu;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • 제62권2호
    • /
    • pp.149-155
    • /
    • 2019
  • Elicitor treatment was performed to increase the anti-inflammatory activity of useful biological sources. The result showed that elicitor-treated Saururus chinensis leaf extracts positively affected nitric oxide (NO) production, and the expression of inducible NO synthase and cyclooxygenase-2 compared to extracts not exposed to elicitor treatment. This finding identified elicitor treatment as a suitable strategy for increasing the biological activity of S. chinensis. Therefore, elicitor-treated S. chinensis is useful both as health functional and medicinal materials.

Inhibition of nitric oxide and TNF-$\alpha$ production by propenone compound through blockaded of NF-$\kappa$B activation in cultured murine macrophages

  • Ju, Hye-Kyung;Lee, Eun-Kyung;Jahng, Yurng-Dong;Lee, Eung-Seok;Chang, Hyeun-Wook
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.156.2-157
    • /
    • 2003
  • Lipopolysaccharide (LPS)-stimulated macrophages produced a large amounts of nitric oxide (NO) by inducible nitric oxide synthase (iNOS). This is an important mechanism in macrophages-induced septic shock and inflammation. In the present study, we tested a synthetic propenone compound, l-furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) for its ability to inhibit the production of tumor necrosis factor-a (TNF-$\alpha$) and an inducible enzyme, iNOS, in the LPS-stimulated murine macrophage-like cell line, Raw264.7. FPP-3 consistently inhibited nitric oxide (NO) and TNF-$\alpha$ production in a dose dependent manner, with $IC_50$> values of 10.0 and 13.1 $\mu$M, respectively. (omitted)

  • PDF

Ceramide analogs inhibit inducible nitric oxide synthase expression and nitric oxide production in interferon-gamma and lipopolysaccharide-stimulated RAW 264.7 macrophages.

  • Park, Sung-Sik;Kim, Hae-Jong;Yim , Chul-Bu;Kim, Mie-Young;Chun, Young-Jin
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.313.1-313.1
    • /
    • 2002
  • Nitric oxide (NO) production through the inducible nitric-oxide synthase (iNOS) pathway has been implicated in inflammatory diseases and cellular injury. Inhibition of various genes related to inflammation, including iNOS is one of the major roles of well-known anti-inflammatory drugs. In the present study, the effects of ceramide analogs on iNOS expression and NO production were evaluated to investigate how ceramide and its structurally related analogs modulate NO-mecliated cellular signals and inflammation. (omitted)

  • PDF

Nitric Oxide Detection of Fe(DTC)3-hybrizided CdSe Quantum Dots Via Fluorescence Energy Transfer

  • Chang-Yeoul, Kim
    • 한국분말재료학회지
    • /
    • 제29권6호
    • /
    • pp.453-458
    • /
    • 2022
  • We successfully synthesize water-dispersible CTAB-capped CdSe@ZnS quantum dots with the crystal size of the CdSe quantum dots controlled from green to orange colors. The quenching effect of Fe(DTC)3 is very efficient to turn off the emission light of quantum dots at four molar ratios of the CdSe quantum dots, that is, the effective covering the surface of quantum dots with Fe(DTC)3. However, the reaction with Fe(DTC)3 for more than 24 h is required to completely realize the quenching effect. The highly quenched quantum dots efficiently detect nitric oxide at nano-molar concentration of 110nM of NO with 34% of recovery of emission light intensity. We suggest that Fe(DTC)3-hybridized CdSe@ZnS quantum dots are an excellent fluorescence resonance energy transfer probe for the detection of nitric oxide in biological systems.

Nitric Oxide Signal Transduction and Its Role in Skin Sensitization

  • Jong Hun Kim;Min Sik Choi
    • Biomolecules & Therapeutics
    • /
    • 제31권4호
    • /
    • pp.388-394
    • /
    • 2023
  • Nitric oxide (NO) is a signaling molecule that plays a crucial role in numerous cellular physiological processes. In the skin, NO is produced by keratinocytes, fibroblasts, endothelial cells, and immune cells and is involved in skin functions such as vasodilation, pigmentation, hair growth, wound healing, and immune responses. NO modulates both innate and adaptive immune responses. As a signaling molecule and cytotoxic effector, NO influences the function of immune cells and production of cytokines. NO is a key mediator that protects against or contributes to skin inflammation. Moreover, NO has been implicated in skin sensitization, a process underlying contact dermatitis. It modulates the function of dendritic cells and T cells, thereby affecting the immune response to allergens. NO also plays a role in contact dermatitis by inducing inflammation and tissue damage. NO-related chemicals, such as nitrofatty acids and nitric oxide synthase (NOS) inhibitors, have potential therapeutic applications in skin conditions, including allergic contact dermatitis (ACD) and irritant contact dermatitis (ICD). Further research is required to fully elucidate the therapeutic potential of NO-related chemicals and develop personalized treatment strategies for skin conditions.

Function and regulation of nitric oxide signaling in Drosophila

  • Sangyun Jeong
    • Molecules and Cells
    • /
    • 제47권1호
    • /
    • pp.100006.1-100006.10
    • /
    • 2024
  • Nitric oxide (NO) serves as an evolutionarily conserved signaling molecule that plays an important role in a wide variety of cellular processes. Extensive studies in Drosophila melanogaster have revealed that NO signaling is required for development, physiology, and stress responses in many different types of cells. In neuronal cells, multiple NO signaling pathways appear to operate in different combinations to regulate learning and memory formation, synaptic transmission, selective synaptic connections, axon degeneration, and axon regrowth. During organ development, elevated NO signaling suppresses cell cycle progression, whereas downregulated NO leads to an increase in larval body size via modulation of hormone signaling. The most striking feature of the Drosophila NO synthase is that various stressors, such as neuropeptides, aberrant proteins, hypoxia, bacterial infection, and mechanical injury, can activate Drosophila NO synthase, initially regulating cellular physiology to enable cells to survive. However, under severe stress or pathophysiological conditions, high levels of NO promote regulated cell death and the development of neurodegenerative diseases. In this review, I highlight and discuss the current understanding of molecular mechanisms by which NO signaling regulates distinct cellular functions and behaviors.