• Title/Summary/Keyword: newton method

Search Result 1,017, Processing Time 0.034 seconds

THE CONVERGENCE BALL OF INEXACT NEWTON-LIKE METHOD IN BANACH SPACE UNDER WEAK LIPSHITZ CONDITION

  • Argyros, Ioannis K.;George, Santhosh
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • We present a local convergence analysis for inexact Newton-like method in a Banach space under weaker Lipschitz condition. The convergence ball is enlarged and the estimates on the error distances are more precise under the same computational cost as in earlier studies such as [6, 7, 11, 18]. Some special cases are considered and applications for solving nonlinear systems using the Newton-arithmetic mean method are improved with the new convergence technique.

LOCAL CONVERGENCE OF NEWTON'S METHOD FOR PERTURBED GENERALIZED EQUATIONS

  • Argyros Ioannis K.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.261-267
    • /
    • 2006
  • A local convergence analysis of Newton's method for perturbed generalized equations is provided in a Banach space setting. Using center Lipschitzian conditions which are actually needed instead of Lipschitzian hypotheses on the $Fr\'{e}chet$-derivative of the operator involved and more precise estimates under less computational cost we provide a finer convergence analysis of Newton's method than before [5]-[7].

  • PDF

Modified Quasi Newton algorithm for boundary estimation in Electrical Impedance Tomography

  • Hwang, Sang-Pil;Jeon, Hae-Jin;Kim, Jae-Hyoung;Lee, Seung-Ha;Choi, Bong-Yeol;Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.32-35
    • /
    • 2004
  • In boundary estimation in Electrical Impedance Tomography (EIT), conventional method is the modified Newton Raphson (mNR) method .The mNR is famous for good method since has good convergence and robustness against noisy data. But the mNR is low efficiency to get and update Jacobian matrix. So, the mNR become very slow algorithm. We propose the Quasi Newton (QN) method to improve efficiency which will lead to speed up in boundary estimation. The QN can improve a low efficiency by using estimated Jacobian matrix contrary to using exactly calculated Jacobian matrix, this used by the mNR. And finally, we propose the modified Quasi Newton (mQN) method because the QN has some problems such as bad early convergence rate and instability of 'divided by zero'. For the verification of the propose method, numerical experiments are conducted and the results show a good performance.

  • PDF

ON THE ORDER AND RATE OF CONVERGENCE FOR PSEUDO-SECANT-NEWTON'S METHOD LOCATING A SIMPLE REAL ZERO

  • Kim, Young Ik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.133-139
    • /
    • 2006
  • By combining the classical Newton's method with the pseudo-secant method, pseudo-secant-Newton's method is constructed and its order and rate of convergence are investigated. Given a function $f:\mathbb{R}{\rightarrow}\mathbb{R}$ that has a simple real zero ${\alpha}$ and is sufficiently smooth in a small neighborhood of ${\alpha}$, the convergence behavior is analyzed near ${\alpha}$ for pseudo-secant-Newton's method. The order of convergence is shown to be cubic and the rate of convergence is proven to be $\(\frac{f^{{\prime}{\prime}}(\alpha)}{2f^{\prime}(\alpha)}\)^2$. Numerical experiments show the validity of the theory presented here and are confirmed via high-precision programming in Mathematica.

  • PDF

IMPROVED CONVERGENCE RESULTS FOR GENERALIZED EQUATIONS

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.24 no.2
    • /
    • pp.161-168
    • /
    • 2008
  • We revisit the study of finding solutions of equations containing a differentiable and a continuous term on a Banach space setting [1]-[5], [9]-[11]. Using more precise majorizing sequences than before [9]-[11], we provide a semilocal convergence analysis for the generalized Newton's method as well the generalized modified Newton's method. It turns out that under the same or even weaker hypotheses: finer error estimates on the distances involved, and an at least as precise information on the location of the solution can be obtained. The above benefits are obtained under the same computational cost.

  • PDF

AN ERROR ANALYSIS FOR A CERTAIN CLASS OF ITERATIVE METHODS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.743-753
    • /
    • 2001
  • We provide local convergence results in affine form for inexact Newton-like as well as quasi-Newton iterative methods in a Banach space setting. We use hypotheses on the second or on the first and mth Frechet-derivative (m≥2 an integer) of the operator involved. Our results allow a wider choice of starting points since our radius of convergence can be larger than the corresponding one given in earlier results using hypotheses on the first-Frechet-derivative only. A numerical example is provided to illustrate this fact. Our results apply when the method is, for example, a difference Newton-like or update-Newton method. Furthermore, our results have direct applications to the solution of autonomous differential equations.

The Origin of Newton's Generalized Binomial Theorem (뉴턴의 일반화된 이항정리의 기원)

  • Koh, Youngmee;Ree, Sangwook
    • Journal for History of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.127-138
    • /
    • 2014
  • In this paper we investigate how Newton discovered the generalized binomial theorem. Newton's binomial theorem, or binomial series can be found in Calculus text books as a special case of Taylor series. It can also be understood as a formal power series which was first conceived by Euler if convergence does not matter much. Discovered before Taylor or Euler, Newton's binomial theorem must have a good explanation of its birth and validity. Newton learned the interpolation method from Wallis' famous book ${\ll}$Arithmetica Infinitorum${\gg}$ and employed it to get the theorem. The interpolation method, which Wallis devised to find the areas under a family of curves, was by nature arithmetrical but not geometrical. Newton himself used the method as a way of finding areas under curves. He noticed certain patterns hidden in the integer binomial sequence appeared in relation with curves and then applied them to rationals, finally obtained the generalized binomial sequence and the generalized binomial theorem.

Time Variant Parameter Estimation using RLS Algorithm with Adaptive Forgetting Factor Based on Newton-Raphson Method (Newton-Raphson법 기반의 적응 망각율을 갖는 RLS 알고리즘에 의한 원격센서시스템의 시변파라메타 추정)

  • Kim, Kyung-Yup;Lee, Joon-Tark
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.435-439
    • /
    • 2007
  • This paper deals with RLS algorithm using Newton-Raphson method based adaptive forgetting factor for a passive telemetry RF sensor system in order to estimate the time variant parameter to be included in RF sensor model. For this estimation with RLS algorithm, phasor typed RF sensor system modelled with inductive coupling principle is used. Instead of applying constant forgetting factor to estimate time variant parameter, the adaptive forgetting factor based on Newton-Raphson method is applied to RLS algorithm without constant forgetting factor to be determined intuitively. Finally, we provide numerical examples to evaluate the feasibility and generality of the proposed method in this paper.

  • PDF

The Design of Iron Loss Minimization of 600W IPMSM by Quasi-newton Method (Quasi-Newton Method에 의한 600W IPMSM의 철손 최소화 설계)

  • Baek, Sung-min;Cho, Gyu-won;Kim, Gyu-tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1053-1058
    • /
    • 2017
  • In this paper, the design of iron loss minimization of 600W was performed by using Quasi-Newton method. Stator shoe, the width of stator teeth and yoke, and the length of d-axis flux path were selected as design parameters, and the output characteristics according to each design variable were considered. The objective function was set to minimize iron loss. Using the Quasi-Newton method, the variables converged to the target value while changing simultaneously and multiple times. As the algorithm advanced optimization, the correlation with the behavior of each variable was compared and analyzed.