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ON THE ORDER AND RATE OF CONVERGENCE FOR
PSEUDO-SECANT-NEWTON’S METHOD LOCATING A

SIMPLE REAL ZERO

Young Ik Kim*

Abstract. By combining the classical Newton’s method with the
pseudo-secant method, pseudo-secant-Newton’s method is constructed
and its order and rate of convergence are investigated. Given a
function f : R→ R that has a simple real zero α and is sufficiently
smooth in a small neighborhood of α, the convergence behavior is
analyzed near α for pseudo-secant-Newton’s method. The order of
convergence is shown to be cubic and the rate of convergence is

proven to be
(

f ′′(α)
2f ′(α)

)2

. Numerical experiments show the validity

of the theory presented here and are confirmed via high-precision
programming in Mathematica.

1.. Introduction and Preliminaries

The aim of this paper is to establish the order and rate of convergence
for a variant of Newton’s method called pseudo-secant-Newton’s method.
Although an analysis for the convergence behavior of this method was
done by Kasturiarachi [5], a slightly different approach will be presented
here under for a sufficiently smooth function f whose typical zero is to
be sought. Indeed, the rate of convergence for this method derived by
Kasturiarachi has turned out to be incorrect. This incorrectedness moti-
vates the current analysis which will provide us with a completely correct
expression for the rate of convergence of the pseudo-secant-Newton’s
method. Furthermore, various numerical examples to be shown with
the high-precision computability of Mathematica [12] will doubtlessly
strengthen the validity of the current expression.
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Let f : R → R have a simple real zero α and be sufficiently smooth
in a small neighborhood of α. Given x0 ∈ R, for n ∈ N ∪ {0} Pseudo-
secant-Newton’s method is iteratively defined by

xn+1 = xn − f(xn)2

{f(xn)− f( x̄n)} f ′(xn)
, (1.1)

where

x̄n = xn − f(xn)
f ′(xn)

. (1.2)

Combining (1.1) with (1.2) immediately leads us to the iterative method
below:

xn+1 = xn − h · f(xn)
f(xn)− f(xn − h)

, (1.3)

where f = f(xn), f ′ = f ′(xn), h = f(xn)/f ′(xn) are used for brevity
and the symbol ′ denotes the derivative with respect to x. Since f(xn)
is approximately equal to 0 in a neighborhood of α, then the value of
limn→∞ h = 0 is assumed.

We expand f(xn − h) by Talyor’s series [1,9] about x = xn, and take
the first several terms up to the third-degree in h to obtain

f(xn)− f(xn − h) = hf ′(xn)− h2

2
f ′′(xn) +

h3

6
f ′′′(xn) + O(h4)

= hf ′(xn)(1− u) ,

(1.4)

where O(h4) is Landau notation for the bounded remainder term of the
corresponding Taylor’s series when divided by h4, and

u =
hf ′′(xn)
2f ′(xn)

− h2f ′′′(xn)
6f ′(xn)

+ O(h3). (1.5)

Since f(xn) ≈ 0 near α, we find that h is small and |u| < 1. Therefore,
the second term of the right side of (1.3) becomes, after expanding by
Taylor series about u = 0,

h · f(xn)
f(xn)− f(xn − h)

= h · (1 + u + u2 + u3 + · · · )

= h

{
1 +

h2

2
· f ′′

f ′
− h2

6
· f ′′′

f ′
+ O(h3)

}

+ h2

(
h

2
· f ′′

f ′
− h2

6
· f ′′′

f ′
+ O(h3)

)2

+ hO(h7)

= h

{
1 +

h

2
· f ′′

f ′
− h2

6
· f ′′′

f ′
+

h2

4
f ′′2

f ′2

}
+ O(h4). (1.6)
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Putting α = xn +α−xn and expanding f(α) by Taylor series about xn,
we obtain

0 = f(α) = f(α− xn + xn) = f(xn) + (α− xn)f ′(xn)

+
(α− xn)2

2!
f ′′(xn) +

(α− xn)3

3!
f ′′′(c),

where c ∈ (a, b), a = min(α, xn), b = max(α, xn) and limn→∞ c = α.
Multiplying by 1/f ′ both sides of the above equation with the aid of

(1.6) leads us to the following equations.

−h = (α− xn)[1 +
(α− xn)

2
f ′′

f ′
+

(α− xn)2

6
f ′′′(c)

f ′
]. (1.7)

h2 = (α− xn)2[1 + (α− xn)
f ′′

f
+

(α− xn)2

4
f ′′2

f ′2
+ O(a− x3

n)]. (1.8)

Subtracting αn from both sides of (1.3) and using (1.6), we obtain the
equation below:

xn+1 − α = xn − α− h

{
1 +

h

2
· f ′′

f ′
− h2

6
· f ′′′

f ′
+

h2

4
f ′′2

f ′2

}
+ O(h4).

Substituting (1.7) into the first-order term in h on the the right side of
the above equation immediately yields the equation below.

xn+1 − α =
(α− xn)2

2
f ′′

f ′
+

(α− xn)3

6
f ′′′(c)

f ′

−h2

(
f ′′

2f ′
− h

6
· f ′′′

f ′
+

h

4
f ′′2

f ′2

)
+ O(h4) (1.9)

=
(α− xn)2

2
f ′′

f ′
+

(α− xn)3

6
f ′′′(c)

f ′

−(α− xn)2
(

1 + (α− xn)
f ′′

f ′
+ O(α− x2

n)
)(

f ′′

2f ′
+ dh

)

where d = f ′′2

4f ′2 −
f ′′′
6f ′ . Further calculation shows that

xn+1 − α = (α− xn)3
{

f ′′′(c)
6f ′

+
f ′′2

4f ′2
− f ′′′(xn)

6f ′
− f ′′2

f ′2

}
+ O(α− x4

n).

As a result, we obtain the following equation

(xn+1 − α)
(xn+1 − α)3

=
f ′′2

4f ′2
+

f ′′′(xn)
6f ′

− f ′′′(c)
6f ′

+ O(xn − α).
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By taking absolute values of both sides of the above equation and passing
to the limit as n approaches infinity, we find that xn → α and c → α.
Hence the above equation now reduces to

η = lim
n→∞

∣∣∣ (xn+1 − α)
(xn+1 − α)3

∣∣∣ =
f ′′2(α)
4f ′2(α),

(1.10)

which is the rate of convergence (asymptotic error constant) [2,3,10]
with third-order convergence. Other numerical methods of order three
can be found in [4,7,8,11]. Kasturiarachi [5] showed a different rate of
convergence

η =
|3 f ′′2(α)− 2f (3)(α)f ′(α)|

6f ′2(α)
which seems incorrect due to the faulty manipulation of the Taylor se-
ries(1.7). The analysis discussed so far finally gives us the following
theorem.

Theorem 1.1. Let f : R → R have a simple real zero α and be
sufficiently smooth in a small neighborhood of α. Then pseudo-secant-
Newton’s method converges with order three and its rate of convergence
is found to be η = |c2|/4, where c = f ′′(α)/f ′(α).

2.. Algorithm, numerical results and discussions

In this section, we construct a zero-finding algorithm with the support
of symbolic and computational ability of Mathematica on the basis of
the analysis shown in Section 1.

Claim 2.2. Algorithm 2.1 (Zero-finding algorithm)
Step 1. For k ∈ N ∪ {0}, construct the iteration scheme (1.3) with the
given function f having a simple zero α, according to the description in
Section 1.

Step 2. Set the minimum number of precision digits. With exact
zero α or most accurate zero, supply the theoretical asymptotic error
constant η. Set the error range ε, the maximum iteration number nmax

and the initial value x0. Compute f(x0) and |x0 − α |.
Step 3. Compute xn+1 in (1.3) for 0 ≤ n ≤ nmax and display the

computed values of n, xn, f(xn), |xn − α|, |en+1/en
3| and η.

As a numerical example for the convergence of pseudo-secant-Newton’s
method, we first illustrate the order of convergence and asymptotic error
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constant with a function

f(x) = (x2 + 1) cos(πx/8)

having a simple real zero α = −4. The symbolic computation of f ′(x)
has been easily done with the aid of Mathematica. Table 1 lists the
numerical results for approximated zeros of f(x) computed with Mathe-
matica programming. To obtain sufficient accuracy, the minimum num-
ber of precision digits was chosen as 250 by assigning $MinPrecision=250
in Mathematica. The error bound ε for | xn − α | < ε was chosen as
0.5× 10−235 for the current experiment. As can be seen in Table 1, the
order of convergence has been confirmed to be cubic.

Table 1. Convergence of pseudo-secant-Newton method
for f(x) = (x2 + 1) cos(πx/8)

n xn f(xn) | xn − α | en+1/en
3 η

0 -3.20000000000000 3.47335 0.800000
1 -3.71842121657687 1.63613 0.281579 0.5499585614
2 -3.99302114596102 0.0464371 0.00697885 0.3125966580
3 -3.99999992409404 5.06739× 10−7 7.59060× 1−−8 0.2233178953 0.2214532872
4 -4.00000000000009 6.46575× 10−22 9.68523× 10−23 0.2214533074
5 -4.00000000000000 1.34314× 10−66 2.01192× 10−67 0.2214532872
6 -4.00000000000000 −1.20400× 10−200 1.80350× 10−201 0.2214532872
7 -4.00000000000000 −4.85718× 10−260 8.12987× 10−261

As a second numerical example to confirm the convergence, we take

f(x) = z10 − 3 z3 ecos x − 1

with a simple real zero
α = 1.2454283753596838267131847481004361733761068230618687830979702334524850709991

418357166929374480675215064276250438067891165701483628864187537195082756847310

407419180946411805425271578504085209021242807458038319574517728156996806134750

040589969392495511043028765346160610249940310166439070367768125915250967547643

327270283457200682630058710094332198956208601144085310955944071401694435332592

961742857525011284992107869083440420262665711921984261027063123895887529076764,

which is accurate up to 250 significant decimal digits. Table 2 also
shows a good accordance with the theoretical ideas presented in this
paper. The computed asymptotic error constants were found in good
agreement with the theoretical asymptotic error constants η up to 10
significant digits. The computed root was rounded to be accurate up to
the 235 significant digits. The limited space allows us to list it only up
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Table 2. Convergence of pseudo-secant-Newton method
for f(x) = z10 − 3 z3 ecos x − 1

n xn f(xn) | xn − α | en+1/en
3 η

0 1.10000000000000 -4.69109 0.145428
1 1.13910928707585 -4.05959 0.106319 34.56716689
2 1.00008863454853 -2.04922 0.0403693 33.59056353
3 1.24383857765155 -0.0954153 0.00158980 24.16511149
4 1.24542829965909 −4.57464× 10−6 7.57006× 10−8 18.83968769 18.64595504
5 1.24542837535968 −4.88810× 10−19 8.08877× 10−21 18.64596421
6 1.24542837535968 −5.96335× 10−58 9.86808× 10−60 18.64595504
7 1.24542837535968 −1.08278× 10−174 1.79177× 10−176 18.64595504
8 1.24542837535968 −3.82104× 10−259 5.62073× 10−261

to 15 significant digits. Additional numerical experiments clearly ensure
cubic convergence of pseudo-secant-Newton’s method.
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