
East Asian Mathematical Journal

Vol. 26 (2010), No. 3, pp. 365–370

LOCAL RESULTS FOR A CONTINUOUS ANALOG OF
NEWTON’S METHOD

Ioannis K. Argyros and Säıd Hilout

Abstract. A local convergence result is provided for the continuous ana-

log of Newton’s method in a Banach space setting. The radius of conver-

gence is larger, the error bounds tighter, and under the same or weaker
hypotheses than before [12].

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x? of equation

F (x) = 0, (1)

where F is a Fréchet–differentiable operator defined on a closed subset D of a
real Hilbert space X with values in a Hilbert space Y.

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
systems are mathematically modeled by difference or differential equations, and
their solutions usually represent the states of the systems. For the sake of sim-
plicity, assume that a time–invariant system is driven by the equation ẋ = T (x),
for some suitable operator T , where x is the state. Then the equilibrium states
are determined by solving equation (1). Similar equations are used in the case
of discrete systems. The unknowns of engineering equations can be functions
(difference, differential, and integral equations), vectors (systems of linear or
nonlinear algebraic equations), or real or complex numbers (single algebraic
equations with single unknowns). Except in special cases, the most commonly
used solution methods are iterative–when starting from one or several initial
approximations a sequence is constructed that converges to a solution of the
equation. Iteration methods are also applied for solving optimization problems.
In such cases, the iteration sequences converge to an optimal solution of the
problem at hand. Since all of these methods have the same recursive structure,
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they can be introduced and discussed in a general framework.

Let x0 ∈ D be given. Assume:

for x ∈ D, F ′(x)−1 ∈ L(Y,X ) the space of bounded linear operators from Y
into X . Let U(x0, r) = {x ∈ X , ‖ x− x0 ‖≤ r} for some r > 0, such that

U(x0, r) ⊆ D, (2)

sup
x∈U(x0,r)

‖ F ′(x)−1 F ′(x0) ‖≤ m(r), (3)

sup
x∈U(x0,r)

‖ F ′(x0)−1 F (i)(x) ‖≤Mi, i = 0, 1 (4)

and,

there exist a unique solution x? of equation (1) in U(x0, r).

Let us now consider the Newton–type continuous method (NTCM) for solv-
ing equation (1):

ẋ = −α F ′(x)−1 F (x), x(0) = x0, (5)

where, α is a given positive constant.

The main local convergence result of this study is:

Theorem 1.1. If the above assumptions hold, and

m(r) ‖ F ′(x0)−1 F (x0) ‖≤ r, (6)

then
(i) Equation (1) has a unique global solution x(t) ∈ U(x?, r) for any x0 ∈

U(x?, r);
(ii) x∞ exists, F (x∞) = 0, x∞ = x?, so that

‖ x(t)− x? ‖≤ r e−α t (t > 0). (7)

Theorem 1.1 improves the corresponding one given by the elegant study in
[12].

Some special cases and applications are also provided in this study. Other
related work can be found in [1]–[11], [13]–[15].

2. Proof of Theorem 1.1

As in [12], we let

Z(t) = x(t)− x?, g(t) =‖ Z(t) ‖,

q(t) =‖ F ′(x0)−1 F (x(t)) ‖, q̇ =
dq

dt
.



LOCAL RESULTS FOR NEWTON’S METHOD 367

In view of (5), we get:

q q̇ = −α (F ′(x)−1 F ′(x) F ′(x)−1 F ′(x) F ′(x)−1 F, F ′(x)−1 F )
= −α q2. (8)

Then, we have:

(8) =⇒ q̇ = −α q
=⇒ q(t) = q(0) e−α t =‖ F ′(x0)−1 F (x0) ‖ e−α t.

(9)

It then follows from (3), (5), and (9):

‖ ẋ ‖ ≤ α ‖ F ′(x)−1 F ′(x0) ‖ ‖ F ′(x0)−1 F (x) ‖
≤ α m(r) ‖ F ′(x0)−1 F (x0) ‖ e−α t.

(10)

Hence, we deduce x∞ exists, ‖ F ′(x0)−1 F (x∞) ‖= 0, which implies

‖ F (x∞) ‖= 0,

and by the uniqueness hypotheses, we obtain x? = x∞.

Moreover, in view of (3), and (10), we obtain in turn:

‖ x(t)− x∞ ‖ ≤ ‖
∫ ∞
t

ẋ(s) ds ‖

= α ‖
∫ ∞
t

(F ′(x(s))−1 F ′(x0))(F ′(x0)−1 F (x(s))) ds ‖

≤ α m(r) ‖ F ′(x0)−1 F (x0) ‖ lim
p−→∞

∫ p

t

e−α s ds

= m(r) ‖ F ′(x0)−1 F (x0) ‖ lim
p−→∞

(e−α p − e−α t)
= m(r) ‖ F ′(x0)−1 F (x0) ‖ e−α t

≤ r e−α t ≤ r,
(11)

which implies (7), and x(t) ∈ U(x?, r) (t > 0).

Moreover, as in (11), we get

‖ x(t)− x0 ‖ = ‖
∫ 1

0

ẋ(t) dt ‖

≤ m(r) ‖ F ′(x0)−1F (x0) ‖ (1− e−α t) ≤ r,
(12)

which implies x(t) ∈ U(x0, r) (t > 0).

Hence, we conclude x(t) ∈ U(x0, r) ∩ U(x?, r). That completes the proof of
Theorem 1.1.

3. Special cases and applications

The results in Theorem 1.1 reduce to the corresponding ones in [12] if
X = Y = D, and F ′(x0)−1 F is replaced by F (non–affine invariant form).
Otherwise they extend the applicability of Newton’s method (5). Note also
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that the advantages of providing convergence results in affine invariant instead
of non–affine invariant form are well known in the literature, and have been
given in [6], [7].

Theorem 1.1 can be weakened in some cases
(i) Hypotheses (2)–(4) can be replaced by:

x0 ∈ U(x?, r) ⊆ D, (13)

‖ F ′(x?)−1 (F ′(x)− F ′(x?)) ‖≤ L ‖ x− x? ‖, L > 0 (14)

for all x ∈ D.

If x ∈ U◦(x?, 1
L

) ⊆ D, then, we have

‖ F ′(x?)−1 (F ′(x)− F ′(x?)) ‖≤ L ‖ x− x? ‖< 1. (15)

In view of (15), it follows from the Banach lemma on invertible
operators [6], [7], that F ′(x)−1 exists, and

‖ F ′(x)−1 F ′(x?) ‖≤ (1− L ‖ x− x? ‖)−1. (16)

Hence, we can set

m(r) =
1

1− L r
, r ∈ (0,

1
L

). (17)

In this case (6) is replaced by

h = 4 L ‖ F ′(x0)−1 F (x0) ‖≤ 1, (18)

and
r ∈ [r1, r2], (19)

for h 6= 0, if r = r2, where, r1, r2 are the real zeros of quadratic
polynomial

g(s) = L s2 − s+ ‖ F ′(x0)−1 F (x0) ‖, (20)

given by

r1 =
1−
√

1− h
2 L

, (21)

r1 =
1 +
√

1− h
2 L

. (22)

(ii) Estimates (18), and (19) can be replaced as follows:

Assume instead of (4):

‖ F ′(x?)−1 (F ′(x0)− F ′(x?)) ‖≤ m1 ‖ x0 − x? ‖ . (23)
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Then, we get:

‖ F ′(x0)−1 F (x0) ‖ ≤ ‖ F ′(x0)−1 F (x?) ‖ ×
‖ F ′(x?)−1 (F ′(x0)− F ′(x?)) ‖

≤ m1 r

1− L r
.

(24)

In view of (11), we should have

m(r) ‖ F ′(x0)−1 F (x0) ‖≤ r (25)

or by (17), and (24)
1

1− L r

m1 r

1− L r
≤ r, (26)

or

r? =
1−√m1

L
, (27)

provided that
m1 ∈ [0, 1). (28)

We refer the reader to [5]–[7], where, in the more general setting of a Banach
space, we have provided a larger radius of convergence for many interesting
examples by using the theoretical approach given in Section 2. The same
examples can be used here by introducing the norms using standard inner
products, and replacing C[a, b] by L2[a, b] in the appropriate places.
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