• Title/Summary/Keyword: new strain

Search Result 2,128, Processing Time 0.03 seconds

Microstructure Evolution of 15Cr ODS Steel by a Simple Torsion Test (단순 전단변형에 의한 15Cr 산화물 분산강화 강의 미세조직 변화)

  • Jin, Hyun Ju;Kang, Suk Hoon;Kim, Tae Kyu
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.271-276
    • /
    • 2014
  • 15Cr-1Mo base oxide dispersion strengthened (ODS) steel which is considered to be as a promising candidate for high- temperature components in nuclear fusion and fission systems because of its excellent high temperature strength, corrosion and radiation resistance was fabricated by using mechanical alloying, hot isostatic pressing and hot rolling. Torsion tests were performed at room temperature, leading to two different shear strain routes in the forward and reverse directions. In this study, microstructure evolution of the ODS steel during simple shearing was investigated. Fine grained microstructure and a cell structure of dislocation with low angle boundaries were characterized with shear strain in the shear deformed region by electron backscattered diffraction (EBSD). Grain refinement with shear strain resulted in an increase in hardness. After the forward-reverse torsion, the hardness value was measured to be higher than that of the forward torsion only with an identical shear strain amount, suggesting that new dislocation cell structures inside the grain were generated, thus resulting in a larger strengthening of the steel.

Experimental study and calculation of laterally-prestressed confined concrete columns

  • Nematzadeh, Mahdi;Fazli, Saeed;Hajirasouliha, Iman
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.517-527
    • /
    • 2017
  • In this paper, the effect of active confinement on the compressive behaviour of circular steel tube-confined concrete (STCC) and concrete-filled steel tube (CFST) columns is investigated. In STCC columns the axial load is only applied to the concrete core, while in CFST columns the load is carried by the whole composite section. A new method is introduced to apply confining pressure on fresh concrete by laterally prestressing steel tubes. In order to achieve different prestressing levels, short-term and long-term pressures are applied to the fresh concrete. Three groups of STCC and CFST specimens (passive, S-active and L-active groups) are tested under axial loads. The results including stress-strain relationships of composite column components, secant modulus of elasticity, and volumetric strain are presented and discussed. Based on the elastic-plastic theory, the behaviour of the steel tube is also analyzed during elastic, yielding, and strain hardening stages. The results show that using the proposed prestressing method can considerably improve the compressive behaviour of both STCC and CFST specimens, while increasing the prestressing level has insignificant effects. By applying prestressing, the linear range in the stress-strain curve of STCC specimens increases by almost twice as much, while the improvement is negligible in CFST specimens.

Software and Hardware Development of Micro-indenter for Material Property Evaluation of Hyper-Elastic Rubber (초탄성고무 물성평가용 미소압입시험기의 소프트웨어 및 하드웨어 개발)

  • Lee, Hyung-Yil;Kim, Dong-Wook;Lee, Jin-Haeng;Nahm, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.816-825
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are examined via finite element (FE) analyses. An optimal location for data analysis is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions, which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/com-pression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress-strain curve with an average error less than 3%.

Plane-Strain Analysis of Auto-Body Panel Using the Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 자동차 판넬 성형공정의 평면 변형해석)

  • 양동열;정완진;송인섭;전기찬;유동진;이정우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.169-178
    • /
    • 1991
  • A plane-strain finite element analysis of sheet metal forming is carried out by using the rigid-plastic FEM based on the membrane theory. The sheet material is assumed to possess normal anisotropy and to obey Hill's new yield criterion and its associated flow rule. A formulation of initial guess generation for the displacement field is derived by using the nonlinear elastic FEM. A method of contact treatment is proposed in which the skew boundary condition for arbitrarily shaped tools is successively used during iteration. In order to verify the validity of the developed method, plane-strain drawing with tools in analytic expression and with arbitrarily shaped tools is analyzed and compared with the published results. The comparison shows that the present method can be effectively used in the analysis of plane-strain sheet metal forming and thus provides the basis of approximate sectional analysis of panel-like sheet forming.

Identification and Characteristics of a Purple, Non-Sulfur Bacterium, Rhodobacter sp. EGH-24 from Korea Coast (한국 해안으로부터 Purple, Non-Sulfur Photosynthetic Bacterium, Rhodobacter sp. EGH-24의 분리 및 특성)

  • 차미선;김기한;조순자;이나은;이정은;이재동;박재림;이상준
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1293-1301
    • /
    • 2003
  • A species of facultative photo-organotrophic, purple, non-sulfur bacterium was isolated from the 47 point at west and south coast of Korea in September 2001. Separated 13 samples of changes with red color under 28-32$^{\circ}C$, 3000 lux, anaerobe conditions for 7 days cultivated in basal medium. For pure isolation from 13 samples, we used agar-shake tube method (0.4 % agar) and separated 5 strains through 13-repetition test. EGH-24 and EGH-30 was identified as the same strain through the RAPD(Random Amplified Polymorphic DNA)-PCR of strain EGH-9, EGH-13, EGH-23, EGH-24, EGH-30. Four isolates cultivated in synthesis wastewater for wastewater biodegradation test. EGH-24 was selected with efficient wastwater treating strain. Based on the results obtained from morphology, nutrient requirements, major bacteriochlorophyll content, 16S-rDNA phylogenetic analysis, EGH-24 strain may be identified as a new strain of the genus Rhodobacter and named Rhodobacter sp. EGH-24.

Design and evaluation of small size six-axis force/torque sensor using parallel plate sturcture (병렬판구조를 이용한 소형 6축 힘/토크센서의 설계 및 특성평가)

  • Joo, Jin-Won;Na, Gi-Su;Kim, Gap-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.353-364
    • /
    • 1998
  • This paper describes the design processes and evaluation results of a small-sized six-axis force/torque sensor. The new six-axis force/torque sensor including S-type structure has been developed using a parallel plate structure as a basic sensing element. In order tominimize coupling errors, the location of strain gages has been determined based on the finite element analysis and the connections of strain gages have been made such that the bridge circuit with 4 strain gages becomes balanced. Several design modifications result in a similar strain sensitivity for six-axis forces and moments, and the reduced coupling errors of 2.6% FS between each forces and moments. Calibration test results show that the six-axis load cell developed which has light weight of 135g and the maximum capacities of 196 N in forces and 19.6 N.m in moments is estimated to be within 7.1% FS in coupling error.

Usefulness of Creep Work-Time ]Relation for Determining Stress Intensity Limit of High-Temperature Components (고온 구조물의 한계응력강도 결정을 위한 크리프 일-시간 관계식의 유용성)

  • Kim, Woo-Gon;Lee, Kyung-Yong;Ryu, Woo-Seog
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.750-757
    • /
    • 2003
  • In order to determine creep stress intensity limit of high-temperature components, the usefulness of the creep work and time equation, defined as W$\_$c/t$\^$p/ = B(where W$\_$c/ = $\sigma$$\varepsilon$ is the total creep work done during creep, and p and B are constants), was investigated using the experimental data. For this Purpose, the creep tests for generating 1.0% strain for commercial type i16 stainless steel were conducted with different stresses; 160 MPa, 150 MPa, 145 MPa, 140 MPa and 135 MPa at 593$^{\circ}C$. The plots of log W$\_$c/ - log t showed a good linear relation up to 10$\^$5/ hr, and the results of the creep work-time relation for p, B and stress intensity values showed good agreement to those of isochronous stress-strain curves (ISSC) presented in ASME BPV NH. The relation can be simply obtained with only several short-term 1% strain data without ISSC which can be obtained by long-term creep data. Particularly, this relation is useful in estimating stress intensity limit for new and emerging class of high-temperature creeping materials.

Solution for a circular tunnel in strain-softening rock with seepage forces

  • Wei, Luo;Zo, Jin-feng;An, Wei
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.553-564
    • /
    • 2020
  • In this study, a simple numerical approach for a circular tunnel opening in strain-softening surrounding rock is proposed considering out-of-plane stress and seepage force based on Biot's effective stress principle. The plastic region of strain-softening surrounding rock was divided into a finite number of concentric rings, of which the thickness was determined by the internal equilibrium equation. The increments of stress and strain for each ring, starting from the elastic-plastic interface, were obtained by successively incorporating the effect of out-of-plane stress and Biot's effective stress principle. The initial value of the outmost ring was determined using equilibrium and compatibility equations. Based on the Mohr-Coulomb (M-C) and generalized Hoek-Brown (H-B) failure criteria, the stress-increment approach for solving stress, displacement, and plastic radius was improved by considering the effects of Biot's effective stress principle and the nonlinear degradation of strength and deformation parameters in plastic zone incorporating out-of-plane stress. The correctness of the proposed approach is validated by numerical simulation.

Design-oriented strength and strain models for GFRP-wrapped concrete

  • Messaoud, Houssem;Kassoul, Amar;Bougara, Abdelkader
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.293-307
    • /
    • 2020
  • The aim of this paper is to develop design-oriented models for the prediction of the ultimate strength and ultimate axial strain for concrete confined with glass fiber-reinforced polymer (GFRP) wraps. Twenty of most used and recent design-oriented models developed to predict the strength and strain of GFRP-confined concrete in circular sections are selected and evaluated basing on a database of 163 test results of concrete cylinders confined with GFRP wraps subjected to uniaxial compression. The evaluation of these models is performed using three statistical indices namely the coefficient of the determination (R2), the root mean square error (RMSE), and the average absolute error (AAE). Based on this study, new strength and strain models for GFRP-wrapped concrete are developed using regression analysis. The obtained results show that the proposed models exhibit better performance and provide accurate predictions over the existing models.

Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory

  • Shariati, Ali;Barati, Mohammad Reza;Ebrahimi, Farzad;Singhal, Abhinav;Toghroli, Ali
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.265-276
    • /
    • 2020
  • A study that primarily focuses on nonlocal strain gradient plate model for the sole purpose of vibration examination, for graphene sheets under linearly variable in-plane mechanical loads. To study a better or more precise examination on graphene sheets, a new advance model was conducted which carries two scale parameters that happen to be related to the nonlocal as well as the strain gradient influences. Through the usage of two-variable shear deformation plate approach, that does not require the inclusion of shear correction factors, the graphene sheet is designed. Based on Hamilton's principle, fundamental expressions in regard to a nonlocal strain gradient graphene sheet on elastic half-space is originated. A Galerkin's technique is applied to resolve the fundamental expressions for distinct boundary conditions. Influence of distinct factors which can be in-plane loading, length scale parameter, load factor, elastic foundation, boundary conditions, and nonlocal parameter on vibration properties of the graphene sheets then undergo investigation.