Browse > Article
http://dx.doi.org/10.4150/KPMI.2014.21.4.271

Microstructure Evolution of 15Cr ODS Steel by a Simple Torsion Test  

Jin, Hyun Ju (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
Kang, Suk Hoon (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
Kim, Tae Kyu (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
Publication Information
Journal of Powder Materials / v.21, no.4, 2014 , pp. 271-276 More about this Journal
Abstract
15Cr-1Mo base oxide dispersion strengthened (ODS) steel which is considered to be as a promising candidate for high- temperature components in nuclear fusion and fission systems because of its excellent high temperature strength, corrosion and radiation resistance was fabricated by using mechanical alloying, hot isostatic pressing and hot rolling. Torsion tests were performed at room temperature, leading to two different shear strain routes in the forward and reverse directions. In this study, microstructure evolution of the ODS steel during simple shearing was investigated. Fine grained microstructure and a cell structure of dislocation with low angle boundaries were characterized with shear strain in the shear deformed region by electron backscattered diffraction (EBSD). Grain refinement with shear strain resulted in an increase in hardness. After the forward-reverse torsion, the hardness value was measured to be higher than that of the forward torsion only with an identical shear strain amount, suggesting that new dislocation cell structures inside the grain were generated, thus resulting in a larger strengthening of the steel.
Keywords
Oxide dispersion strengthened steel; Simple shear; Strain path change; Dislocation cell structure; Hardening effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. S. Choi, D. H. Kim, S. H. Kim, S. H. Kang, J. S. Jang, H. N. Han, K. H. Oh: J. Nucl. Mater., 428 (2012) 98-102.   DOI   ScienceOn
2 D. A. Hughes and N. Hansen: Acta Mater., 45 (1997) 3871-3886.   DOI   ScienceOn
3 B. L. Hansen and C. A. Bronkhorst: Modell. Simul. Mater. Sci. Eng., 18 (2010) 1-42.
4 W. R. Corwin: Nucl. Eng. & Tech., 38 (2006) 591.
5 R. L. Klueh, P. J. Maziasz, I. S. Kim, L. Heatherly, D. T. Hoelzer, N. Hashimoto, E. A. Kenik and K. Miyahara: J. Nucl. Mater., 307 (2002) 773-777.
6 T. Hayashi, P. M. Sarosi, J. H. Schneibel and M. J. Mills: Acta Mater., 56 (2008) 1407-1416.   DOI   ScienceOn
7 J. Malaplate, F. Mompiou, J. L. Bechade, T. Van Den Berghe, M. Ratti: J. Nucl. Mater., 405 (2011) 95-100.
8 R. Schaublin, A. Ramar, N. Baluc, V. de Castro and M. A. Monge: J. Nucl. Mater., 351 (2006) 247-260.   DOI   ScienceOn
9 Y. Chimi, A. Iwase, N. Ishikawa, M. Kobiyama, T. Inami and S. Okuda: J. Nucl. Mater., 297 (2001) 355-357.   DOI   ScienceOn
10 H. Trinkaus and B. N. Singh: J. Nucl. Mater., 323 (2003) 229.   DOI   ScienceOn
11 U. F. Kocks, C. N. Tome and H.-R. Wenk: Texture and Anisotropy, Cambridge University Press (1998) 201.
12 C. Sun, K. Y. Yu, J. H. Lee, Y. Liu, H. Wang, L. Shao, S. A. Maloy, K. T. Hartwig and X. Zhang: J. Nucl. Mater., 420 (2012) 235-240.   DOI   ScienceOn
13 D. C. Crawford, D. L. Porterm and S. L. Hayes: J. Nucl. Mater., 371 (2007) 202-231.   DOI   ScienceOn