DOI QR코드

DOI QR Code

Microstructure Evolution of 15Cr ODS Steel by a Simple Torsion Test

단순 전단변형에 의한 15Cr 산화물 분산강화 강의 미세조직 변화

  • Jin, Hyun Ju (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Kang, Suk Hoon (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Tae Kyu (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
  • 진현주 (한국원자력연구원 원자력소재개발부) ;
  • 강석훈 (한국원자력연구원 원자력소재개발부) ;
  • 김태규 (한국원자력연구원 원자력소재개발부)
  • Received : 2014.06.18
  • Accepted : 2014.08.14
  • Published : 2014.08.28

Abstract

15Cr-1Mo base oxide dispersion strengthened (ODS) steel which is considered to be as a promising candidate for high- temperature components in nuclear fusion and fission systems because of its excellent high temperature strength, corrosion and radiation resistance was fabricated by using mechanical alloying, hot isostatic pressing and hot rolling. Torsion tests were performed at room temperature, leading to two different shear strain routes in the forward and reverse directions. In this study, microstructure evolution of the ODS steel during simple shearing was investigated. Fine grained microstructure and a cell structure of dislocation with low angle boundaries were characterized with shear strain in the shear deformed region by electron backscattered diffraction (EBSD). Grain refinement with shear strain resulted in an increase in hardness. After the forward-reverse torsion, the hardness value was measured to be higher than that of the forward torsion only with an identical shear strain amount, suggesting that new dislocation cell structures inside the grain were generated, thus resulting in a larger strengthening of the steel.

Keywords

References

  1. W. R. Corwin: Nucl. Eng. & Tech., 38 (2006) 591.
  2. D. C. Crawford, D. L. Porterm and S. L. Hayes: J. Nucl. Mater., 371 (2007) 202-231. https://doi.org/10.1016/j.jnucmat.2007.05.010
  3. R. L. Klueh, P. J. Maziasz, I. S. Kim, L. Heatherly, D. T. Hoelzer, N. Hashimoto, E. A. Kenik and K. Miyahara: J. Nucl. Mater., 307 (2002) 773-777.
  4. T. Hayashi, P. M. Sarosi, J. H. Schneibel and M. J. Mills: Acta Mater., 56 (2008) 1407-1416. https://doi.org/10.1016/j.actamat.2007.11.038
  5. J. Malaplate, F. Mompiou, J. L. Bechade, T. Van Den Berghe, M. Ratti: J. Nucl. Mater., 405 (2011) 95-100.
  6. R. Schaublin, A. Ramar, N. Baluc, V. de Castro and M. A. Monge: J. Nucl. Mater., 351 (2006) 247-260. https://doi.org/10.1016/j.jnucmat.2006.02.005
  7. Y. Chimi, A. Iwase, N. Ishikawa, M. Kobiyama, T. Inami and S. Okuda: J. Nucl. Mater., 297 (2001) 355-357. https://doi.org/10.1016/S0022-3115(01)00629-8
  8. H. Trinkaus and B. N. Singh: J. Nucl. Mater., 323 (2003) 229. https://doi.org/10.1016/j.jnucmat.2003.09.001
  9. C. Sun, K. Y. Yu, J. H. Lee, Y. Liu, H. Wang, L. Shao, S. A. Maloy, K. T. Hartwig and X. Zhang: J. Nucl. Mater., 420 (2012) 235-240. https://doi.org/10.1016/j.jnucmat.2011.10.001
  10. U. F. Kocks, C. N. Tome and H.-R. Wenk: Texture and Anisotropy, Cambridge University Press (1998) 201.
  11. D. A. Hughes and N. Hansen: Acta Mater., 45 (1997) 3871-3886. https://doi.org/10.1016/S1359-6454(97)00027-X
  12. B. L. Hansen and C. A. Bronkhorst: Modell. Simul. Mater. Sci. Eng., 18 (2010) 1-42.
  13. Y. S. Choi, D. H. Kim, S. H. Kim, S. H. Kang, J. S. Jang, H. N. Han, K. H. Oh: J. Nucl. Mater., 428 (2012) 98-102. https://doi.org/10.1016/j.jnucmat.2011.10.045

Cited by

  1. Powders vol.22, pp.1, 2015, https://doi.org/10.4150/KPMI.2015.22.1.46