Browse > Article
http://dx.doi.org/10.12989/gae.2020.22.6.553

Solution for a circular tunnel in strain-softening rock with seepage forces  

Wei, Luo (Department of Civil Engineering, East China Jiaotong University)
Zo, Jin-feng (Department of Civil Engineering, Central South University)
An, Wei (Department of Civil Engineering, Central South University)
Publication Information
Geomechanics and Engineering / v.22, no.6, 2020 , pp. 553-564 More about this Journal
Abstract
In this study, a simple numerical approach for a circular tunnel opening in strain-softening surrounding rock is proposed considering out-of-plane stress and seepage force based on Biot's effective stress principle. The plastic region of strain-softening surrounding rock was divided into a finite number of concentric rings, of which the thickness was determined by the internal equilibrium equation. The increments of stress and strain for each ring, starting from the elastic-plastic interface, were obtained by successively incorporating the effect of out-of-plane stress and Biot's effective stress principle. The initial value of the outmost ring was determined using equilibrium and compatibility equations. Based on the Mohr-Coulomb (M-C) and generalized Hoek-Brown (H-B) failure criteria, the stress-increment approach for solving stress, displacement, and plastic radius was improved by considering the effects of Biot's effective stress principle and the nonlinear degradation of strength and deformation parameters in plastic zone incorporating out-of-plane stress. The correctness of the proposed approach is validated by numerical simulation.
Keywords
strain-softening; out-of-plane stress; seepage force; new numerical procedure; surrounding rock; Biot's effective stress principle;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Aalianvari, A. (2017), "Combination of engineering geological data and numerical modeling results to classify the tunnel route based on the groundwater seepage", Geomech. Eng., 13(4), 671-683. https://doi.org/10.12989/gae.2017.13.4.671.   DOI
2 Aksoy, C.O., Aksoy, G.G., Guney, A., Ozacar, V. and Yaman, H.E. (2020), "Influence of time-dependency on elastic rock properties under constant load and its effect on tunnel stability", Geomech. Eng., 20(1), 1-7. https://doi.org/10.12989/gae.2020.20.1.001.   DOI
3 Alonso, E., Alejano, L.R., Varas, F., Fdez-Manin, G. and Carranza-Torres, C. (2003), "Ground response curves for rock masses exhibiting strain-softening behaviour", Int. J. Numer. Anal. Meth. Geomech., 27(13), 1153-1185. https://doi.org/10.1002/nag.315.   DOI
4 Atkinson, J.H. and Potts, D.M. (1977), "Stability of a shallow circular tunnel in cohesionless soil", Geotechnique, 27(2), 203-215. https://doi.org/10.1680/geot.1977.27.2.203.   DOI
5 Biot, M.A. and Wills, D.G. (1957), "The elastic coefficients of the theory of consolidation", J. Appl. Mech., 24, 594-601.   DOI
6 Bobet, A. (2001), "Analytical solutions for shallow tunnels in saturated ground", J. Eng. Mech., 127(12), 1258-1266. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:12(1258).   DOI
7 Brown, E.T., Bray, J.W., Ladanyi, B. and Hoek, E. (1983), "Ground response curves for rock tunnels", J. Geotech. Eng., 109(1), 15-39. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:1(15).   DOI
8 Bui, T.A., Wong, H., Deleruyelle, F., Dufour, N., Leo, C. and Sun, D.A. (2014), "Analytical modeling of a deep tunnel inside a poro-viscoplastic rock mass accounting for different stages of its life cycle", Comput. Geotech., 58(5), 88-100. https://doi.org/10.1016/j.compgeo.2013.11.004.   DOI
9 Carranza-Torres, C. (2004), "Elasto-plastic solution of tunnel problems using the generalized form of the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 41(3), 480-481. https://doi.org/10.1016/j.ijrmms.2004.03.111.   DOI
10 Chen, G.H. and Zou, J.F. (2020), "Analysis of tunnel face stability with non-linear failure criterion under the pore water pressure", Eur. J. Environ. Civ. Eng., 1-13. https://doi.org/10.1080/19648189.2020.1777905.
11 Chen, G.H., Zou, J.F. and Pan, Q.J. (2020), "Earthquake-induced slope displacements in heterogeneous soils with tensile strength cut-off", Comput. Geotech., 124, 103637. https://doi.org/10.1016/j.compgeo.2020.103637.   DOI
12 Cosenza, P., Ghoreychi, M., De Marsily, G., Vasseur, G. and Violette, S. (2002), "Theoretical prediction of poroelastic properties of argillaceous", Water Resour. Res., 38(10), 25-1. https://doi.org/10.1029/2001WR001201.   DOI
13 Detournay, E. and Cheng, A.H.D. (1993), Fundamentals of Poroelasticity, in Analysis and Design Methods, Pergamon Press.
14 Farhadian, H., Hassani, A.N. and Katibeh, H. (2017), "Groundwater inflow assessment to Karaj Water Conveyance tunnel, northern Iran", KSCE J. Civ. Eng., 21(6), 2429-2438. https://doi.org/10.1007/s12205-016-0995-2.   DOI
15 Schleiss, A. (1986), ''Design of previous pressure tunnels", Int. Water Power Dam Construct., 38(5), 21-26.
16 Ogawa, T. and Lo, K.Y. (1987), "Effects of dilatancy and yield criteria on displacements around tunnels", Can. Geotech. J., 24(1), 100-113. https://doi.org/10.1139/t87-009.   DOI
17 Park, K.H., Tontavanich, B. and Lee, J.G. (2008), "A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses", Tunn. Undergr. Sp. Technol., 23(2), 151-159. https://doi.org/10.1016/j.tust.2007.03.002.   DOI
18 Pinto, F. and Whittle, A.J. (2013), "Ground movements due to shallow tunnels in soft ground. I: Analytical solutions", J. Geotech. Geoenviron. Eng., 140(4), 04013040. https://doi.org/10.1061/(ASCE)GT.1943-5606. 0000948.   DOI
19 Qian, Z.H., Zou, J.F., Tian, J. and Pan, Q.J. (2020), "Estimations of active and passive earth thrusts of non-homogeneous frictional soils using a discretisation technique", Comput. Geotech., 119(3), 103366. https://doi.org/10.1016/j.compgeo.2019.103366.   DOI
20 Rezaei Amir, H., Mojtaba, S., Mohammad, R. and Baghban, G. (2019), "EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements", Geomech. Eng., 19(2), 153-165. https://doi.org/10.12989/gae.2019.19.2.153.   DOI
21 Wang, S.L., Wu, Z., Guo M.W. and Ge, X.R. (2012), "Theoretical solutions of a circular tunnel with the influence of out-of-plane stress in elastic-brittle-plastic rock", Tunn. Undergr. Sp. Technol., 30(4), 155-168. https://doi.org/10.1016/j.tust.2012.02.016.   DOI
22 Xiao, Y. and Liu, H. (2017), "Elastoplastic constitutive model for rockfill materials considering particle breakage", Int. J. Geomech., 17(1), 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.   DOI
23 Zhang, C., Han, K. and Zhang, D. (2015), "Face stability analysis of shallow circular tunnels in cohesive-frictional soils", Tunn. Undergr. Sp. Technol., 50, 345-357. https://doi.org/10.1016/j.tust.2015.08.007.   DOI
24 Xiao, Y., Chen, H., Stuedlein, A.W., Evans, T.M., Chu, J., Cheng, L., Jiang, N., Lin, H., Liu, H. and Aboel-Naga, H.M. (2020), "Restraint of particle breakage by biotreatment method", J. Geotech. Geoenviron. Eng., 146. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
25 Xiao, Y., Meng, M., Daouadjie, A., Chen, Q., Wu, Z. and Jiang, X. (2020), "Effect of particle size on crushing and deformation behaviors of rockfill materials", Geosci. Front., 11(2), 375-388. https://doi.org/10.1016/j.gsf.2018.10.010.   DOI
26 Xiao, Y., Sun, Y., Yin, F., Liu, H. and Xiang, J. (2017), "Constitutive modeling for transparent granular soils", Int. J. Geomech., 17(7), 04016150. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000857.   DOI
27 Zou, J.F., Wei A. and Li, L. (2020), "Analytical solution for steady seepage and groundwater inflow into an underwater tunnel", Geomech. Eng., 20(3), 267-273. https://doi.org/10.12989/gae.2020.20.3.267.   DOI
28 Zhang, C., Li, W., Zhu, W. and Tan, Z. (2020), "Face stability analysis of a shallow horseshoe-shaped shield tunnel in clay with a linearly increasing shear strength with depth", Tunn. Undergr. Sp. Technol., 97, 103291. https://doi.org/10.1016/j.tust.2020.103291.   DOI
29 Zou, J.F. and Zuo, S.Q. (2017), "Similarity solution for the synchronous grouting of shield tunnel under the vertical nonaxisymmetric displacement boundary condition", Adv. Appl. Math. Mech., 9(1), 205-232. https://doi.org/10.4208/aamm.2016.m1479.   DOI
30 Zou, J.F., Sheng, Y.M., Xia, M.Y. and Wang, F. (2020), "A novel numerical-iterative-approach for strain-softening surrounding rock incorporating rockbolts effectiveness and hydraulic-mechanical coupling based on Three-Dimensional Hoek-Brown strength criterion", Tunn. Undergr. Sp. Technol., 101(7), 103358. https://doi.org/10.1016/j.tust.2020.103358.   DOI
31 Lee, Y.K. and Pietruszczak, S. (2008), "A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass", Tunn. Undergr. Sp. Technol., 23(5), 588-599. https://doi.org/10.1016/j.tust.2007.11.002.   DOI
32 Golpasand, M.R., Ngoc, A.D., Daniel, D. and Mohammad-Reza, N. (2018), "Effect of the lateral earth pressure coefficient on settlements during mechanized tunneling", Geomech. Eng., 16(6), 643-654. https://doi.org/10.12989/gae.2018.16.6.643.   DOI
33 Guan, Z., Jiang, Y., Tanabasi, Y. and Huang, H. (2007), "Reinforcement mechanics of passive bolts in conventional tunnelling", Int. J. Rock Mech. Min. Sci., 44(4), 625-636. https://doi.org/10.1016/j.ijrmms.2006.10.003.   DOI
34 Harr, M.E. (1962), Groundwater and Seepage, McGraw-Hill, New York, U.S.A.
35 Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek- Brown failure criterion-2002 edition", Procedings of the North American Rock Mechanics Society Meeting, Toronto, Canada, July.
36 Jeffery, G.B. (1921), "Plane stress and plane strain in bipolar co-ordinates", Phil. Trans. Royal Soc. London Ser. A, 221(582-593), 265-293. https://doi.org/10.1098/rsta.1921.0009.   DOI
37 Lei, S. (1999), "An analytical solution for steady flow into a tunnel", Ground Water, 37(1), 23-26. https://doi.org/10.1111/j.1745-6584.1999.tb00 953.   DOI
38 Li, W. and Zhang, C. (2020), "Face stability analysis for a shield tunnel in anisotropic sands", Int. J. Geomech., 20(5), 04020043. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001666.   DOI
39 Mindlin, R.D. (1940), "Stress distribution around a tunnel", T. Amer. Soc. Civ. Eng., 195(1), 1117-1140.   DOI