• 제목/요약/키워드: neuronal cells

검색결과 1,100건 처리시간 0.031초

Mechanism of $Ca^{2+}$ -activated $Cl^-$ Channel Activation by Ginsenosides in Xenopus Oocytes

  • Park, Seok;Jung, Se-Yeon;Park, Seong-Hwan;Ko, Sung-Ryong;Hyewon Rhim;Park, Chul-Seung;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제24권4호
    • /
    • pp.168-175
    • /
    • 2000
  • Xenopus oocytes를 이용하여 인삼의 유효 성분으로 알려진 Ginseng total saponin(GTS)의 신호 전달 기작을 two electrode voltage clamp 방법을 이용하여 연구하였다. GTS는 세포 바깥에 처리했을 때 -2OmV보다 더 positive한 voltage에서 커다란 outward current를 유도하였다. 그러나, 세포 안쪽에 GTS를 injection할 경우 아무런 효과가 없는 것으로 나타났다. GTS처리에 의한 outward current유발 효과는 GTS 투여 용량에 의존적인 것으로 나타났다(EC$_{50}$ : 4.4 $\mu\textrm{g}$/ml). GTS의 작용은 $Ca^{2+}$-activated Cl- channel blocker인 niflumic acid에 의하여 차단되었다. 칼슘 chelator인 BAPIA와 IP$_3$ 수용체 길항제인 heparin을 세포내 injection에 의하여 차단되었다. 또한 active phospholipase C inhibitor(PLC)인U-73122를 세포 바깥에 전처리할 경우에도 GTS의 작용이 부분적으로 억제되는 것으로 나타났다. 백일해 독소를 전처리할 경우GTS의 작용은 억제되지 않은 것으로 나타났으나, GTP analog인 GTP${\gamma}$S를 세포내 injection할 경우 GTS의 작용은 억제되는 것으로 나타났다. 이러한 연구 결과는 GTS가 oocytes세포막 성분과 상호 작용에 의하여 $Ca^{2+}$-activated Cl- channel이 열리도록 하고, 이 과정에 PLC활성 및 백일해 독소에 민감하지 않은 G단백질활성 및 IP3에 민감한 세포내 $Ca^{2+}$-activated로부터 칼슘 방출을 유도하는 것으로 나타났다났다

  • PDF

Abrogation of the Circadian Nuclear Receptor REV-ERBα Exacerbates 6-Hydroxydopamine-Induced Dopaminergic Neurodegeneration

  • Kim, Jeongah;Jang, Sangwon;Choi, Mijung;Chung, Sooyoung;Choe, Youngshik;Choe, Han Kyoung;Son, Gi Hoon;Rhee, Kunsoo;Kim, Kyungjin
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.742-752
    • /
    • 2018
  • Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive degeneration of dopaminergic (DAergic) neurons, particularly in the substantia nigra (SN). Although circadian dysfunction has been suggested as one of the pathophysiological risk factors for PD, the exact molecular link between the circadian clock and PD remains largely unclear. We have recently demonstrated that $REV-ERB{\alpha}$, a circadian nuclear receptor, serves as a key molecular link between the circadian and DAergic systems. It competitively cooperates with NURR1, another nuclear receptor required for the optimal development and function of DA neurons, to control DAergic gene transcription. Considering our previous findings, we hypothesize that $REV-ERB{\alpha}$ may have a role in the onset and/or progression of PD. In the present study, we therefore aimed to elucidate whether genetic abrogation of $REV-ERB{\alpha}$ affects PD-related phenotypes in a mouse model of PD produced by a unilateral injection of 6-hydroxydopamine (6-OHDA) into the dorsal striatum. $REV-ERB{\alpha}$ deficiency significantly exacerbated 6-OHDA-induced motor deficits as well as DAergic neuronal loss in the vertebral midbrain including the SN and the ventral tegmental area. The exacerbated DAergic degeneration likely involves neuroinflammation-mediated neurotoxicity. The $REV-erb{\alpha}$ knockout mice showed prolonged microglial activation in the SN along with the over-production of interleukin $1{\beta}$, a pro-inflammatory cytokine, in response to 6-OHDA. In conclusion, the present study demonstrates for the first time that genetic abrogation of $REV-ERB{\alpha}$ can increase vulnerability of DAergic neurons to neurotoxic insults, such as 6-OHDA, thereby implying that its normal function may be beneficial for maintaining DAergic neuron populations during PD progression.

Identification of cis-Regulatory Region Controlling Semaphorin-1a Expression in the Drosophila Embryonic Nervous System

  • Hong, Young Gi;Kang, Bongsu;Lee, Seongsoo;Lee, Youngseok;Ju, Bong-Gun;Jeong, Sangyun
    • Molecules and Cells
    • /
    • 제43권3호
    • /
    • pp.228-235
    • /
    • 2020
  • The Drosophila transmembrane semaphorin Sema-1a mediates forward and reverse signaling that plays an essential role in motor and central nervous system (CNS) axon pathfinding during embryonic neural development. Previous immunohistochemical analysis revealed that Sema-1a is expressed on most commissural and longitudinal axons in the CNS and five motor nerve branches in the peripheral nervous system (PNS). However, Sema-1a-mediated axon guidance function contributes significantly to both intersegmental nerve b (ISNb) and segmental nerve a (SNa), and slightly to ISNd and SNc, but not to ISN motor axon pathfinding. Here, we uncover three cis-regulatory elements (CREs), R34A03, R32H10, and R33F06, that robustly drove reporter expression in a large subset of neurons in the CNS. In the transgenic lines R34A03 and R32H10 reporter expression was consistently observed on both ISNb and SNa nerve branches, whereas in the line R33F06 reporter expression was irregularly detected on ISNb or SNa nerve branches in small subsets of abdominal hemisegments. Through complementation test with a Sema-1a loss-of-function allele, we found that neuronal expression of Sema-1a driven by each of R34A03 and R32H10 restores robustly the CNS and PNS motor axon guidance defects observed in Sema-1a homozygous mutants. However, when wild-type Sema-1a is expressed by R33F06 in Sema-1a mutants, the Sema-1a PNS axon guidance phenotypes are partially rescued while the Sema-1a CNS axon guidance defects are completely rescued. These results suggest that in a redundant manner, the CREs, R34A03, R32H10, and R33F06 govern the Sema-1a expression required for the axon guidance function of Sema-1a during embryonic neural development.

Mechanism of Epibatidine-Induced Catecholamine Secretion in the Rat Adrenal Gland

  • Lim, Dong-Yoon;Lim, Geon-Han;Oh, Song-Hoon;Kim, Il-Sik;Kim, Il-Hwan;Woo, Seong-Chang;Lee, Bang-Hun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권3호
    • /
    • pp.259-270
    • /
    • 2001
  • The present study was attempted to investigate the characteristics of epibatidine on secretion of catecholamines (CA) from the isolated perfused model of the rat adrenal gland, and to establish the mechanism of action. Epibatidine $(3{\times}10^{-8}\;M)$ injected into an adrenal vein produced a great inhibition in secretory response of CA from the perfused rat adrenal gland. However, upon the repeated injection of epibatidine $(3{\times}10^{-8}\;M)$ at 15 min-intervals, CA secretion was rapidly decreased after second injection of epibatidine. However, there was no statistical difference between CA secretory responses of both 1st and 2nd periods by the successive administration of epibatidine at 120 min-intervals. Tachyphylaxis to releasing effects of CA evoked by epibatidine was observed by the repeated administration. Therefore, in all subsequent experiments, epibatidine was not administered successively more than twice only 120 min-intervals. The epibatidine-induced CA secretion was markedly inhibited by the pretreatment with atropine, chlorisondamine, pirenzepine, nicardipine, TMB-8, and perfusion of $Ca^{2+}-free$ Krebs solution containing EGTA, while was not affected by diphenhydramine. Moreover, the CA secretion evoked by ACh for 1st period $(0{\sim}4\;min)$ was greatly potentiated by the simultaneous perfusion of epibatidine $(1.5{\times}10^{-8}\;M),$ but followed by time-dependently gradual reduction after 2nd period. The CA release evoked by high potassium $(5.6{\times}10^{-8}\;M),$ for 1st period $(0{\sim}4\;min)$ was also enhanced by the simultaneous perfusion of epibatidine, but those after 2nd period were not affected. Taken together, these experimental data suggest that epibatidine causes catecholamine secretion in a calcium dependent fashion from the perfused rat adrenal gland through activation of neuronal cholinergic (nicotinic and muscarinic) receptors located in adrenomedullary chromaffin cells. It also seems that epibatidine-evoked catecholamine release is not relevant to stimulation of histaminergic receptors.

  • PDF

Effects of Geiji-Bokryung-Hwan on eNOS, nNOS, Caveolin-1 and bFGF Protein Expressions and the Endothelial Cells of the Corpus Cavernosum in Hypercholesterolemic Rat

  • Kim Jae-Woo;Son Soo-Gon;Sa Eun-Ho;Kim Cherl-Ho;Park Won-Hwan
    • 동의생리병리학회지
    • /
    • 제20권1호
    • /
    • pp.174-180
    • /
    • 2006
  • We examine the effect of Geiji-Bokryung-Hwan(GBH) on erectile function in a rat model of hypercholesterolemic erectile dysfunction. GBH, a drug preparation consisting of five herbs of Cinnamomi Ramulus (Geiji), Poria Cocos (Bokryun), Mountan Cortex Radicis (Mokdanpi), Paeoniae Radix (Jakyak), and Persicae Semen (Doin) is a traditional Korean herbal medicine that is widely used in the treatment of atherosclerosis-related disorders. In this study, 3-month-old Sprague-Dawley rats were used. The 6 rats control animals were fed a normal diet and the other 18 rats were fed 1% cholesterol diet for 3 months. After 1 months, GBH was added to the drinking water of the treatment group of 12 rats but not the cholesterol only group of 6 rats. Of the 12 rats 6 received 30 mg/kg per day (group 1) and 6 received 60 mg/kg per day (group 2) of GBH. At 3 months erectile function was evaluated with cavernous nerve electrostimulation in all animals. Penile tissues were collected for electron microscopy, and to perform Western blot for endothelial nitric oxide synthase (eNOS), neuronal nitric oxide synthase (nNOS), basic fibroblast growth factor (bFGF) and caveolin-1. Systemic arterial pressure was not significantly different between the animals that were fed the 1% cholesterol diet and the controls. Conversely erectile function was not impaired in the herbal medicine treated rats. Electron microscopy showed many caveolae with fingerlike processes in the cavernous smooth muscle and endothelial cell membranes in control and treated rats but not in the cholesterol only group of rats. Western blot showed differences among groups in protein expression for eNOS, nNOS, caveolin-1 and bFGF protein expression in penile tissue. Increased eNOS and nNOS protein expressions dy high cholesterol diet were significantly decreased in group 1 and group 2. Interestingly, caveolin-1 and bFGF protein expression was significantly higher in groups 1 and 2 than in the cholesterol only and control groups.

Developmental Roles of D-bifunctional Protein-A Zebrafish Model of Peroxisome Dysfunction

  • Kim, Yong-Il;Bhandari, Sushil;Lee, Joon No;Yoo, Kyeong-Won;Kim, Se-Jin;Oh, Gi-Su;Kim, Hyung-Jin;Cho, Meyoung;Kwak, Jong-Young;So, Hong-Seob;Park, Raekil;Choe, Seong-Kyu
    • Molecules and Cells
    • /
    • 제37권1호
    • /
    • pp.74-80
    • /
    • 2014
  • The peroxisome is an intracellular organelle that responds dynamically to environmental changes. Various model organisms have been used to study the roles of peroxisomal proteins in maintaining cellular homeostasis. By taking advantage of the zebrafish model whose early stage of embryogenesis is dependent on yolk components, we examined the developmental roles of the D-bifunctional protein (Dbp), an essential enzyme in the peroxisomal ${\beta}$-oxidation. The knockdown of dbp in zebrafish phenocopied clinical manifestations of its deficiency in human, including defective craniofacial morphogenesis, growth retardation, and abnormal neuronal development. Overexpression of murine Dbp rescued the morphological phenotypes induced by dbp knockdown, indicative of conserved roles of Dbp during zebrafish and mammalian development. Knockdown of dbp impaired normal development of blood, blood vessels, and most strikingly, endoderm-derived organs including the liver and pancreas - a phenotype not reported elsewhere in connection with peroxisome dysfunction. Taken together, our results demonstrate for the first time that zebrafish might be a useful model animal to study the role of peroxisomes during vertebrate development.

케라틴이 첨가된 PLGA 필름에서 케라틴 함량별 SC세포의 증식 및 형태유지에 관한 연구 (A Study on Proliferation and Phenotypical Stability of Schwann Cell on Keratin/PLGA Film)

  • 오아영;김순희;김윤태;전나리;양재찬;;;;신형식;이종문;강길선
    • 폴리머
    • /
    • 제33권2호
    • /
    • pp.118-123
    • /
    • 2009
  • 본 연구는 신경손상 모델에서 신경재생을 유도하는 슈반세포(SC)의 배양에 케라틴이 미치는 영향을 확인하기 위한 실험으로써, 친수성 아미노산으로 구성된 케라틴과 PLGA를 혼합하여 케라틴/PLGA 필름을 0, 10, 20, 그리고 50 wt%가 되도록 제조하여, 케라틴 안에 존재하는 다양한 단백질 및 신호전달물질이 슈반세포의 증식, 부착형태 그리고 표현형 유지에 미치는 영향을 확인하였다. 세포의 배양 방법은 손쉽고 순수한 세포 분리가 가능한 Morrissey의 방법을 이용하였고 필름의 젖음성 확인을 위하여 접촉각 측정을 실시하였으며, 정해진 시간에 세포를 계수하여 케라틴 함량에 따른 세포 성장차이를 비교하였다. 케라틴/PLGA 필름에서의 세포의 부착 거동 및 세포 형태를 SEM을 통하여 확인하였고 슈반세포의 표현형 유지를 확인하기 위해 RT-PCR을 수행하였다. 실험 결과, 다른 함유량과 비교 시 케라틴 10 또는 20 wt%가 함유된 케라틴/PLGA 필름이 SC 성장 및 표현형 유지에 긍정적인 영향을 미침을 확인하였다.

LPS로 자극된 미세아교세포에서 풀무치 에탄올 추출물의 신경염증 억제 효능 (Anti-neuroinflammatory Effects of a Locusta migratoria Ethanol Extract in LPS-stimulated BV-2 Microglia)

  • 이화정;서민철;이준하;김인우;김선영;황재삼;김미애
    • 생명과학회지
    • /
    • 제28권11호
    • /
    • pp.1332-1338
    • /
    • 2018
  • 뇌신경 질환의 주요 원인이 되는 것으로 알려진 미세아교세포의 과도한 활성화에 의한 신경염증반응에서 풀무치 에탄올 추출물이 미세아교세포의 염증 반응에 미치는 영향을 검토하였다. 미세아교세포의 활성화를 유도하기 위해 LPS를 사용하였으며, LPS 처리에 의해 신경염증반응의 지표인 NO의 생성량과 이들을 조절하는 iNOS, COX-2의 발현이 증가됨을 확인 할 수 있었다. 그러나 풀무치 에탄올 추출물을 1시간 전처리 한 후 LPS를 처리한 경우 추출물의 농도에 의존적으로 이들의 발현량이 현저히 감소되는 것을 확인 하였다. 또한 LPS 처리로 인해 분비되는 염증성 cytokine들의 생성량도 풀무치 에탄올 추출물에 의해 현저히 억제 됨을 확인 할 수 있었다. 따라서 본 연구의 결과는 미세아교세포의 과도한 활성화로 인해 발생되는 뇌 신경질환의 치료 소재로서 풀무치 에탄올 추출물의 활성 가능성을 제시하였다.

치매유발물질인 염화알루미늄으로 손상된 C6 신경교종 세포주에서의 항산화 효과 (Antioxidative Effect of Aster yomena (Kitm.) Extract on C6 Glioma Cell Line Damaged by AlCl3, Dementia Inducer)

  • 서영미
    • 대한임상검사과학회지
    • /
    • 제52권4호
    • /
    • pp.408-416
    • /
    • 2020
  • 본 연구는 치매유발물질의 하나인 염화알루미늄(AlCl3)의 신경독성을 C6 glioma세포를 배양하여 조사하였으며, AlCl3의 독성에 대한 쑥부쟁이[Aster yomena (Kim.), AY] 추출물의 보호효과를 조사하였다. 또한, 세포생존율을 비롯하여 항산화능 분석인 XO 저해능과 SAR-소거능을 조사하였다. 그 결과 AlCl3는 배양 세포에 처리한 농도에 비례적으로 세포생존율을 유의하게 감소시켰다. 이 과정에서 XTT50값이 130.0 μM로 나타나 Borenfreund와 Puerner의 독성판정기준에 의하여 중간독성(mid-cytotoxic)으로 나타났다. 한편, 항산화제인 QU는 AlCl3의 독성으로 손상된 세포생존율을 유의하게 증가시켰다. 또한, AlCl3의 독성에 대한 AY 추출물의 방어효과에 있어서, AY 추출물은 AlCl3만의 처리에 비하여 세포생존율을 유의하게 증가시켰으며, 이와 동시에 XO 저해능과 SAR-소거능과 같은 항산화 효과를 나타냈다. 이상의 결과로부터 AlCl3의 독성에 산화적 손상이 관여하고 있으며, AY 추출물은 항산화 효과에 의하여 AlCl3의 독성을 효과적으로 방어하였다. 따라서, AY 추출물과 같은 천연물질은 질환유발제인 AlCl3와 같이 산화적 손상과 관련이 있는 중금속화합물의 독성 완화나 질환의 치료적 개선을 위한 대체물질개발에 있어 유용한 소재인 것으로 생각된다.

Suppressive Impact of Ginsenoside-Rg2 on Catecholamine Secretion from the Rat Adrenal Medulla

  • Ha, Kang-Su;Kim, Ki-Hwan;Lim, Hyo-Jeong;Ki, Young-Jae;Koh, Young-Youp;Lim, Dong-Yoon
    • Natural Product Sciences
    • /
    • 제27권2호
    • /
    • pp.86-98
    • /
    • 2021
  • This study was designed to characterize the effect of ginsenoside-Rg2 (Rg2), one of panaxatriol saponins isolated from Korean ginseng root, on the release of catecholamines (CA) in the perfused model of the rat adrenal medulla, and also to establish its mechanism of action. Rg2 (3~30 µM), administered into an adrenal vein for 90 min, depressed acetylcholine (ACh)-induced CA secretion in a dose- and time-dependent manner. Rg2 also time-dependently inhibited the CA secretion induced by 3-(m-chloro-phenyl-carbamoyl-oxy)-2-butynyltrimethyl ammonium chloride (McN-A-343), 1.1-dimethyl-4-phenyl piperazinium iodide (DMPP), and angiotensin II (Ang II). Also, during perfusion of Rg2, the CA secretion induced by high K+, veratridine, cyclopiazonic acid, methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoro-methyl-phenyl)-pyridine-5-carboxylate (Bay-K-8644) depressed, respectively. In the simultaneous presence of Rg2 and Nω-nitro-L-arginine methyl ester hydrochloride ʟ-NAME), the CA secretion induced by ACh, Ang II, Bay-K-8644 and veratridine was restored nearly to the extent of their corresponding control level, respectively, compared to those of inhibitory effects of Rg2-treatment alone. Virtually, NO release in adrenal medulla following perfusion of Rg2 was significantly enhanced in comparison to the corresponding spontaneous release. Also, in the coexistence of Rg2 and fimasartan, ACh-induced CA secretion was markedly diminished compared to the inhibitory effect of fimasartan-treated alone. Collectively, these results demonstrated that Rg2 suppressed the CA secretion induced by activation of cholinergic as well as angiotensinergic receptors from the perfused model of the rat adrenal gland. This Rg2-induced inhibitory effect seems to be exerted by reducing both influx of Na+ and Ca2+ through their ionic channels into the adrenomedullary cells as well as by suppressing Ca2+ release from the cytoplasmic calcium store, at least through the elevated NO release by activation of NO synthase, which is associated to the blockade of neuronal cholinergic and AT1-receptors. Based on these results, the ingestion of Rg2 may be helpful to alleviate or prevent the cardiovascular diseases, via reduction of CA release in adrenal medulla and consequent decreased CA level in circulation.