Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.11.1332

Anti-neuroinflammatory Effects of a Locusta migratoria Ethanol Extract in LPS-stimulated BV-2 Microglia  

Lee, Hwa Jeong (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Seo, Minchul (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Joon Ha (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, In-Woo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Sun Young (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Hwang, Jae-Sam (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Mi-Ae (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
Journal of Life Science / v.28, no.11, 2018 , pp. 1332-1338 More about this Journal
Abstract
Activated microglia, induced by various pathogens, protect neurons and maintain homeostasis of the central nervous system (CNS). However, severe activation causes neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease because of the secretion of various neurotoxic molecules, such as nitric oxide (NO), prostaglandin (PG), and pro-inflammatory cytokines. Because chronic microglial activation endangers neuronal survival, negative regulators of microglial activation have been identified as potential therapeutic candidates for treatment of many neurological diseases. One potential source of these regulators is Locusta migratoria, a grasshopper of the Acrididae, usually 4-6 cm in size, belonging to the family of large insects in Acrididae. This grasshopper is an edible insect resource that can be consumed by humans as protein source or used for animal feed. The aim of the present study was to examine the inhibitory effects of a L. migratoria ethanol extract (LME) on the production of inflammatory mediators in LPS-stimulated BV-2 microglia cells. The extract significantly inhibited the NO, iNOS, COX-2, and pro-inflammatory cytokine ($TNF-{\alpha}$, IL-6 and $IL-1{\beta}$) levels in BV-2 microglia cell. Because the inhibition of microglial activation may be an effective solution for treating brain disorders like Alzheimer's and Parkinson's diseases, these results suggest that LME may be a potential therapeutic agent for the treatment of brain disorders induced by neuroinflammation.
Keywords
BV-2 microglia; Locusta migratoria; neuroinflammation; nitric oxide; proinflammatory cytokine;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E. and Chaudhuri, G. 1987. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA. 84, 9265-9269.   DOI
2 Lee, M. R., Kim, J. C., Lee, S. J., Kim, S. H., Lee, S. J., Park, S. E., Lee, W. H. and Kim, J. S. 2017. Assessment of Physiological Activity of Entomopathogenic Fungi with Insecticidal Activity Against Locusts. Kor. J. Appl. Entomol. 56, 301-308.   DOI
3 Knott, C., Shern, G. and Wilkin, G. P. 2000. Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyflooxygenase-1 and -2. Mol. Cell. Neurosci. 16, 724-739.   DOI
4 Mason, R. P. and Cockcroft, J. R. 2006. Targeting nitric oxide with drug therapy. J. Clin. Hypertens (Greenwich) 8, 40-52.   DOI
5 McCartney-Francis, N., Allen, J. B., Mizel, D. E., Albina, J. E., Xie, Q. W., Nathan, C. F. and Wahl, S. M. 1993. Suppression of arthritis by an inhibitor of nitric oxide synthase. J. Exp. Med. 178, 749-754.   DOI
6 Okamoto, S. and Lipton, S. A. 2015. S-nitrosylation in neurogenesis and neuro-nal development. Biochim. Biophys. Acta. 1850, 1588-1593.   DOI
7 Park, D. S., Yoon, M. Z., Xu, H., Yu, J. R. and Kom, T. S. 2004. Screening of anti-atherogenic substances from insect resources. Kor. J. Phar-macogn. 35, 233-238.
8 Park, J. H., Kim, S. H. and Lee, S. R. 2017. Inhibitory effect of Petalonia binghamiae on neuroinflammation in LPS-stimulated microglial cells. J. Nutr. Health. 50, 25-31.   DOI
9 Park, J. Y., Heo, S. M., An, E. Y., Han, J. S., Hwang, S. W. and Kang, C. Y. 2005. High throughput-compatible screening of anti-oxida-tive substances by insect extract library. Kor. J. Food Preserv. 12, 482-488.
10 Perry, V. H. and Gordon, S. 1997. Immunology of the nervous system. pp.155-172. Oxford University press, New York.
11 Angus, J. A. and Cocks, T. M. 1989. Endothelium-derived reaxing factor. Pharmacol. Ther. 41, 303-352.   DOI
12 Benveniste, E. N. 1997. Immunology of the nervous system. pp.419-459. Oxford University press, New York.
13 Benveniste, E. N. 1998. Cytokine actions in the central nervous system. Cytokine Growth Factor Rev. 9, 259-275.   DOI
14 Beutler, B. and Cerami, A. 1988. The history, properties, and biological effects of cachectin. Biochemistry 27, 7575-7582.   DOI
15 Boje, K. M. and Arora, P. K. 1992. Microglia-produced nitric oxide and reactive nitrogen oxide mediate neuronal cell death. Brain Res. 587, 250-256.   DOI
16 Cross, A. K. and Woodroofd, M. N. 2001. Immunoregulation of microglial functional properties. Microsc. Res. Tech. 54, 10-17.   DOI
17 Farrow, R. A. and Colless, D. H. 1980. Analysis of the interrelationships of geographical races of Locusta migratoria (Linnaeus) (Orthoptera: Acrididae), by numerical taxonomy, with special reference to sub-speciation, in the tropics and affinities of the Australian race. Acrida 9, 77-99.
18 Gonzalez-Scarano, F. and Baltuch, G. 1999. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22, 219-240.   DOI
19 Hanada, T. and Yoshimura, A. 2002. Regulation of cytokine signaling and inflammation. Cytokine growth Factor. Rev. 3, 413-421.
20 Hobbs, A., Higgs, A. and Moncada, S. 1999. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. Toxicol. 39, 191-220.   DOI
21 Pfeilschifter, J., Eberhardt, W., Hummel, R., Kunz, D., Muhl, H., Nitsch, D., Pluss, C. and Walker, G. 1996. Therapeutic strategies for the inhibition of inducible nitric oxide synthase-potential for a novel class of anti-inflammatory agents. Cell Biol. Int. 20, 51-58.   DOI
22 Salvemini, D., Misko, T. P., Masferrer, J. L., Seibert, K., Cur-rie, M. G. and Needleman, P. 1993. Nitric oxide activates cyclooxygenase enzymes. Proc. Natl. Acad. Sci. USA. 90, 7240-7244.   DOI
23 Scapagnini, G., Foresti, R., Calabrese, V., Giuffrida Stella, A. M., Green, C. J. and Motterlini, R. 2002. Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers. Mol. Pharmacol. 3, 554-561.
24 Seo, M. C., Lee, J. H., Baek, M. H., Kim, M. A., Ahn, M. Y., Kim, S. H., Yun, E. Y. and Hwang, J. S. 2017. A novel role for earthworm peptide Lumbricusin as a regelator of neurinfammation. Biochem. Biophys. Res. Commun. 490, 1004-1010.   DOI
25 Son, E. H., Lee, J. W. and Yoo, J. Y. 2004. Brain disease treatment. KISTI. 11, 1-39.
26 Takeuchi, T. 2007. Clinical development and future perspective of biological agents. Nippon Rinsho Review 65, 1185-1188.
27 Uvarov, B. P. 1977. Grasshoppers and Locusts. pp.475. Centre for Overseas Pest Research, London.
28 Tassoni, D., Kaur, G., Weisinger, R. S. and Sinclair, A. J. 2008. The role of eicosanoids in the brain. Asia Pac. J. Clin. Nutr. 17, 220-228.
29 Yoon, H. J., Lee Y, B., Lee, K. Y., Kim. S. Y. and Jeong, J. K. 2016. Artificial breeding method of Locust migratoria. Korea patent. 10-2016-0071011.