Browse > Article
http://dx.doi.org/10.14348/molcells.2014.2300

Developmental Roles of D-bifunctional Protein-A Zebrafish Model of Peroxisome Dysfunction  

Kim, Yong-Il (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University)
Bhandari, Sushil (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University)
Lee, Joon No (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University)
Yoo, Kyeong-Won (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University)
Kim, Se-Jin (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University)
Oh, Gi-Su (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University)
Kim, Hyung-Jin (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University)
Cho, Meyoung (Department of Internal Medicine, Gunsan Medical Center)
Kwak, Jong-Young (Immune-network Pioneer Research Center, Department of Biochemistry, College of Medicine, Dong-A University)
So, Hong-Seob (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University)
Park, Raekil (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University)
Choe, Seong-Kyu (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University)
Abstract
The peroxisome is an intracellular organelle that responds dynamically to environmental changes. Various model organisms have been used to study the roles of peroxisomal proteins in maintaining cellular homeostasis. By taking advantage of the zebrafish model whose early stage of embryogenesis is dependent on yolk components, we examined the developmental roles of the D-bifunctional protein (Dbp), an essential enzyme in the peroxisomal ${\beta}$-oxidation. The knockdown of dbp in zebrafish phenocopied clinical manifestations of its deficiency in human, including defective craniofacial morphogenesis, growth retardation, and abnormal neuronal development. Overexpression of murine Dbp rescued the morphological phenotypes induced by dbp knockdown, indicative of conserved roles of Dbp during zebrafish and mammalian development. Knockdown of dbp impaired normal development of blood, blood vessels, and most strikingly, endoderm-derived organs including the liver and pancreas - a phenotype not reported elsewhere in connection with peroxisome dysfunction. Taken together, our results demonstrate for the first time that zebrafish might be a useful model animal to study the role of peroxisomes during vertebrate development.
Keywords
D-bifunctional protein; embryogenesis; model organism; peroxisome; zebrafish;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baes, M., Huyghe, S., Carmeliet, P., Declercq, P.E., Collen, D., Mannaerts, G.P., and Van Veldhoven, P.P. (2000). Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl branched fatty acids and bile acid intermediates but also of very long chain fatty acids. J. Biol. Chem. 275, 16329-16336.   DOI   ScienceOn
2 Baumgart, E., Vanhorebeek, I., Grabenbauer, M., Borgers, M., Declercq, P.E., Fahimi, H.D., and Baes, M. (2001). Mitochondrial alterations caused by defective peroxisomal biogenesis in a mouse model for Zellweger syndrome (PEX5 knockout mouse). Am. J. Pathol. 159, 1477-1494.   DOI   ScienceOn
3 Choe, S.K., Lu, P., Nakamura, M., Lee, J., and Sagerstrom, C.G. (2009). Meis cofactors control HDAC and CBP accessibility at Hox-regulated promoters during zebrafish embryogenesis. Dev. Cell. 17, 561-567.   DOI   ScienceOn
4 Dirkx, R., Vanhorebeek, I., Martens, K., Schad, A., Grabenbauer, M., Fahimi, D., Declercq, P., Van Veldhoven, P.P., and Baes, M. (2005). Absence of peroxisomes in mouse hepatocytes causes mitochondrial and ER abnormalities. Hepatology 41, 868-878.   DOI   ScienceOn
5 Faust, P.L., Su, H.M., Moser, A., and Moser, H.W. (2001). The peroxisome deficient PEX2 Zellweger mouse: pathologic and biochemical correlates of lipid dysfunction. J. Mol. Neurosci. 16, 289-297.   DOI   ScienceOn
6 Ferdinandusse, S., Denis, S., Overmars, H., Van Eeckhoudt, L., Van Veldhoven, P.P., Duran, M., Wanders, R.J., and Baes, M. (2005). Developmental changes of bile acid composition and conjugation in L- and D- bifunctional protein single and double knockout mice. J. Biol. Chem. 280, 18658-18666.   DOI   ScienceOn
7 Kimmel, CB., Ballard, W.W., Kimmel, SR., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310.   DOI   ScienceOn
8 Flynn, E.J. 3rd, Trent, C.M., and Rawls, J.F. (2009). Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio). J. Lipid Res., 50, 1641-1652.   DOI   ScienceOn
9 Huyghe, S., Mannaerts, G.P., Baes, M., and Van Veldhoven, P.P. (2006). Peroxisomal multifunctional protein-2: the enzyme, the patients and the knockout mouse model. Biochim. Biophys. Acta 1761, 973-994.   DOI   ScienceOn
10 Islinger, J., Grille, S., Fahimi, H.D., and Schrader, M. (2012). The peroxisome: an update on mysteries. Histochem. Cell. Biol. 137, 547-574.   DOI   ScienceOn
11 Lieschke, G.J., and Currie, P. (2007). Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353-367.   DOI   ScienceOn
12 Mehtälä, M.L., Lensink, M.F., Pietikäinen, L.P., Hiltunen, J.K., and Glumoff, T. (2013). On the molecular basis of D-bifunctional protein deficiency type III. PLoS One 8, e53688.   DOI
13 Moller, G., Van Grunsven, E.G., Wanders, R.J., and Adamski, J. (2001). Molecular basis of D-bifunctional protein deficiency. Mol. Cell. Endocrinol. 171, 61-70.   DOI   ScienceOn
14 Muller-Hocker, J., Walther, J.U., Bise, K., Pongratz, D., and Hubner, G. (1984). Mitochondrial myopathy with loosely coupled oxidative phosphorylation in a case of Zellweger syndrome. A cytochemical-ultrastructural study. Virchows. Arc. B Cell. Pathol. Incl. Mol. Pathol. 45, 125-138.   DOI
15 Roels, F., Espeel, M., Poggi, F., Mandel, H., Van Maldergem, L., and Saudubray, J.M. (1993). Human liver pathology in peroxisomal diseases: a review including novel data. Biochimie 75, 281-292.   DOI   ScienceOn
16 Schlegel, A., and Stainier, D.Y. (2006). Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae. Biochemistry 45, 15179-15187.   DOI   ScienceOn
17 Suzuki, Y., Jiang, L.L., Souri, M., Miyazawa, S., Fukuda, S., Zhang, Z., Une, M., Shimozawa, N., Kondo, N., Orii, T., et al. (1997). D-3-Hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency: a newly identified peroxisomal disorder. Am. J. Hum. Genet. 61, 1153-1162.   DOI   ScienceOn
18 Thoms, S., Gronborg, S., and Gartner, J. (2009). Organelle interplay in peroxisomal disorders. Trends Mol. Med. 15, 293-302.   DOI   ScienceOn
19 Van Grunsven, E.G., Van Berkel, E., and Ijlst, L. (1998). Peroxisomal D-hydroxyacyl-CoA dehydrogenase deficiency: resolution of the enzyme defect and its molecular basis in bifunctional protein deficiency. Proc. Natl. Acad. Sci. USA 95, 2128-2133.   DOI
20 Van Grunsven, E.G., Mooijer, P.A., Aubourg, P., and Wanders, R.J. (1999). Enoyl-CoA hydratase deficiency: identification of a new type of D-bifunctional protein deficiency. Hum. Mol. Genet. 8, 1509-1516.   DOI   ScienceOn
21 Van Veldhoven, P.P., (2010). Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J. Lipid Res. 51, 2863-2895.   DOI   ScienceOn
22 Choe, S.K., Zhang, X., Hirsh, N., Straubhaar, J., and Sagerstrom, C.G. (2011). A screen for hoxb1-regulated genes identifies ppp1r14al as a regulator of rhombomere 4 Fgf-signaling center. Dev. Biol. 358, 356-367.   DOI   ScienceOn
23 Verheiiden, S., Bottelbergs, A., Krysko, O., Krysko, D.V., Beckers, L., De Munter, S., Van Veldhoven, P.P., Wyns, S., Kulik, W., Nave, K.A., et al. (2013). Peroxisomal multifunctional protein-2 deficiency causes neuroinflammation and degeneration of purkinje cells independent of very long chain fatty acid accumulation. Neurobiol. Dis. 58, 258-269.   DOI   ScienceOn
24 Baes, M., Gressens, P., Baumgart, E., Carmeliet, P., Casteels, M., Fransen, M., Evrard, P., Fahimi, D., Declercq, P.E., Collen, D., et al. (1997). A mouse model for Zellweger syndrome. Nat. Genet. 17, 49-57.   DOI   ScienceOn
25 Baes, M., and Van Veldhoven, P.P. (2012). Mouse models for peroxisome biogenesis defects and b-oxidation enzyme deficiencies. Biochim. Biophys. Acta 1822, 1489-1500.   DOI   ScienceOn