• Title/Summary/Keyword: neural network compensator

Search Result 70, Processing Time 0.023 seconds

Stability Analysis of Visual Servoing with Sliding-mode Estimation and Neural Compensation

  • Yu Wen
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.545-558
    • /
    • 2006
  • In this paper, PD-like visual servoing is modified in two ways: a sliding-mode observer is applied to estimate the joint velocities, and a RBF neural network is used to compensate the unknown gravity and friction. Based on Lyapunov method and input--to-state stability theory, we prove that PD-like visual servoing with the sliding mode observer and the neuro compensator is robust stable when the gain of the PD controller is bigger than the upper bounds of the uncertainties. Several simulations are presented to support the theory results.

Adaptive Backstepping Control Using Self Recurrent Wavelet Neural Network for Stable Walking of the Biped Robots (이족 로봇의 안정한 걸음새를 위한 자기 회귀 웨이블릿 신경 회로망을 이용한 적응 백스테핑 제어)

  • Yoo Sung-Jin;Park Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.233-240
    • /
    • 2006
  • This paper presents the robust control method using a self recurrent wavelet neural network (SRWNN) via adaptive backstepping design technique for stable walking of biped robots with unknown model uncertainties. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the biped robots. The adaptation laws for weights of the SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for on-line controlling biped robots. Computer simulations of a five-link biped robot with unknown model uncertainties verify the validity of the proposed control system.

Nonlinear Feedforward Compensation of BLDDM Position Control using Neural Network (신경회로망을 이용한 직접구동용 브러쉬없는 전동기 위치 추종 제어 시스템의 비선형 전향 보상)

  • Kim, Kyeong-Hwa;Lee, Jung-Hoon;Ko, Jong-Sun;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.294-297
    • /
    • 1994
  • A robust position tracking controller of the BLDDM sensitive to the load torque disturbance and inertia variation is constructed It is consisted of the linear feedback controller and the nonlinear feedforward compensator using the neural network. With effietive feedforward compensation of neural network, the robust position control can be obtained, which is verified by computer simulations.

  • PDF

Self-Recurrent Wavelet Neural Network Based Adaptive Backstepping Control for Steering Control of an Autonomous Underwater Vehicle (수중 자율 운동체의 방향 제어를 위한 자기회귀 웨이블릿 신경회로망 기반 적응 백스테핑 제어)

  • Seo, Kyoung-Cheol;Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.406-413
    • /
    • 2007
  • This paper proposes a self-recurrent wavelet neural network(SRWNN) based adaptive backstepping control technique for the robust steering control of autonomous underwater vehicles(AUVs) with unknown model uncertainties and external disturbance. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the steering model of AUV. The adaptation laws for the weights of SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for the on-line control of AUV. Finally, simulation results for steering control of an AUV with unknown model uncertainties and external disturbance are included to illustrate the effectiveness of the proposed method.

Compensation of Error Signal using a Neural Network (신경망을 이용한 오차 신호 보상)

  • Park, Jin-Woo;Lee, Soo-Sung;Ha, Hong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.572-574
    • /
    • 1998
  • This paper describes design method of control system with a pre-compensator using a neural network to compensate a error signal between a reference' signal and system response. The neural network which is used here is the mixed structure and it's algorithm is a back propagation that modify coupling coefficients. Applying this method to the position control system using DC servo motor as a driver, we verify the usefulness of this method with simulation.

  • PDF

Hybrid Sliding Mode Control of 5-link Biped Robot in Single Support Phase Using a Wavelet Neural Network (웨이블릿 신경망을 이용한 한발지지상태에서의 5 링크 이족 로봇의 하이브리드 슬라이딩 모드 제어)

  • Kim, Chul-Ha;Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1081-1087
    • /
    • 2006
  • Generally, biped walking is difficult to control because a biped robot is a nonlinear system with various uncertainties. In this paper, we propose a hybrid sliding-mode control method using a WNN uncertainty observer for stable walking of the 5-link biped robot with model uncertainties and the external disturbance. In our control system, the sliding mode control is used as main controller for the stable walking and a wavelet neural network(WNN) is used as an uncertainty observe. to estimate uncertainties of a biped robot model, and the error compensator is designed to compensate the reconstruction error of the WNN. The weights of WNN are trained by adaptation laws that are induced from the Lyapunov stability theorem. Finally, the effectiveness of the proposed control system is verified through computer simulations.

Construction of the I-PD Control System by Multilayer Neural Network (다층 신경망에 의한 I-PD 제어계의 구성)

  • 고태언
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.74-79
    • /
    • 2002
  • Many control techniques have been proposed in order to improve the control performance in discrete-time domain control system. In control system using these techniques, the response-characteristic of system is dependent on the gains of the controller. Specially, There is a need to readjust the gain of controller when the response of system is changed by disturbance or load fluctuation. In this paper, I-PD controller and pre-compensator are designed by multilayer neural network. The gains of I-PD controller and pre-compensator are adjusted automatically by back propagation algorithm when the response characteristic of system is changed under a condition. Applying this control technique to the position control system using a DC servo motor as a driver, the control performance of controller is verified by the results of experiment.

  • PDF

Speed Error Compensation of Electric Differential System Using Neural Network (신경망을 이용한 전기차동차의 속도오차 보상)

  • Ryoo, Young-Jae;Lee, Ju-Sang;Lim, Young-Cheol;Chang, Young-Hak;Kim, Eui-Sun;Moon, Chae-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1205-1210
    • /
    • 2001
  • This paper describes a methodology using neural network to compensate the nonlinear error of deriving speed for electric differential system included in electric vehicle. An electric differential system which drives each of the left and right wheels of the electric vehicle independently. The electric vehicle driven by induction motor has the nonlinear speed error which depends on a steering angle and speed command. When a vehicle drives along a curved road lane, the speed unblance of inner and outer wheels makes vehicles vibration and speed reduction. To compensate for the speed error, we collected the speed data of the inner wheel and outer wheel in various speed and the steering angle data by using an manufactured electric vehicle and the real system. According to the analysis of the acquisited data, we designed the differential speed control system based on a speed error compensator using neural network.

  • PDF

Neurointerface Using an Online Feedback-Error Learning Based Neural Network for Nonholonomic Mobile Robots

  • Lee, Hyun-Dong;Watanabe, Keigo;Jin, Sang-Ho;Syam, Rafiuddin;Izumi, Kiyotaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.330-333
    • /
    • 2005
  • In this study, a method of designing a neurointerface using neural network (NN) is proposed for controlling nonholonomic mobile robots. According to the concept of virtual master-slave robots, in particular, a partially stable inverse dynamic model of the master robot is acquired online through the NN by applying a feedback-error learning method, in which the feedback controller is assumed to be based on a PD compensator for such a nonholonomic robot. A tracking control problem is demonstrated by some simulations for a nonholonomic mobile robot with two-independent driving wheels.

  • PDF

Servo Control of Hydraulic Motor using Artificial Intelligence (인공지능을 이용한 유압모터의 서보제어)

  • 신위재;허태욱
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.49-54
    • /
    • 2003
  • In this paper, we propose a controller with the self-organizing neural network compensator for compensating PID controller's response. PID controller has simple design method but needs a lot of trials and errors to determine coefficients. A neural network control method does not have optimal structure as the parameters are pre-specified by designers. In this paper, to solve this problem, we use a self-organizing neural network which has Back Propagation Network algorithm using a Gaussian Potential Function as an activation function of hidden layer nodes for compensating PID controller's output. Self-Organizing Neural Network's learning is proceeded by Gaussian Function's Mean, Variance and number which are automatically adjusted. As the results of simulation through the second order plant, we confirmed that the proposed controller get a good response compare with a PID controller. And we implemented the of controller performance hydraulic servo motor system using the DSP processor. Then we observed an experimental results.

  • PDF