• Title/Summary/Keyword: nerve agent simulant

Search Result 5, Processing Time 0.027 seconds

Chemical Warfare Agent Simulant Decontamination of Chitosan Treated Cotton Fabric (키토산 처리 면직물의 군사용 화학 작용제 모사체 분해 연구)

  • Kwon, Woong;Han, Minwoo;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.32 no.1
    • /
    • pp.51-56
    • /
    • 2020
  • This study aims to pursue the multi-functional textile finishing method to detoxify chemical warfare agent by simply treating the well-known antimicrobial agent, chitosan, to cotton fabric. For this purpose, DFP(diisopropylfluorophosphate) was sele cted as a chemical warfare agent simulant and cotton fabric was treated with 0.5, 1.0, and 2wt% chitosan solution in 1wt% acetic acid. DFP decontamination properties of the chitosan treated cotton fabrics were evaluated and compared with the untreated cotton fabric. The chitosan treated cotton fabrics showed better DFP decontamination than the untreated cotton. Decontamination properties of the chitosan treated cotton fabrics improved with the increased chitosan solution used. Especially, the cotton fabrics treated with 2wt% chitosan solution showed 5 times more DFP decontamina tion than the untreated cotton fabrics. This suggested that the chitosan treated fabric has potential to be used as a material for protective clothing with chemical warfare agent detoxifying and antimicrobial properties.

Influence of the Micropore Structures of PAN-based Activated Carbon Fibers on Nerve Agent Simulant Gas (DMMP) Sensing Property (PAN계 활성탄소섬유의 미세기공 구조가 신경작용제 유사가스(DMMP) 감응 특성에 미치는 영향)

  • Kang, Da Hee;Kim, Min-Ji;Jo, Hanjoo;Choi, Ye Ji;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.191-195
    • /
    • 2018
  • In this study, the influence of microporous structures of activated carbon fibers (ACFs) on dimethyl methylphosphonate (DMMP) gas sensing properties as a nerve agent simulant was investigated. The pore structure was given to carbon fibers by chemical activation process, and an electrode was fabricated for gas sensors by using these fibers. The PAN based ACF electrode, which is an N-type semiconductor, received electrons from a reducing gas such as DMMP, and then electrical resistance of its electrode finally decreased because of the reduced density of electron holes. The sensitivity of the fabricated DMMP gas sensor increased from 1.7% to 5.1% as the micropore volume increased. It is attributed that as micropores were formed for adsorbing DMMP whose molecular size was 0.57 nm, electron transfer between DMMP and ACF was facilitated. In conclusion, it is considered that the appropriate pore structure control of ACFs plays an important role in fabricating the DMMP gas sensor with a high sensitivity.

Study on the formulations for Topical Skin Protectant against Liquid-Phase Chemical Warfare Agents (액체성 화학작용제의 흡수를 차단하는 피부보호제 제제 설계 연구)

  • Kim, Sang Woong;Seo, Dong Sung;Son, Hong Ha;Yu, Chi Ho;Joe, Hae Eun;Cho, Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.210-217
    • /
    • 2022
  • Chemical warfare agents(CWA) such as nerve agents and vesicating agents show lethality by skin contamination. Skin protection, therefore, is one of the top priorities to deal with the growing threat from CWA. In an attempt to develop the most effective topical skin protectant(TSP), candidate substances including PFPE(perfluorinated polyether), PTFE(polytetrafluoroethylene), glycerin, and polysaccharides were evaluated in forms of various formulations against nerve agent simulant DMMP(dimethylmethyl phosphonate) penetration. The protective efficacy of the formulation against DMMP penetration was estimated as the onset time of color change of the KM9 chemical agent detection paper. Based on this study, it was found that several PFPE- and glycerin-based formulations exhibit remarkably superior efficacy as a protective cream. This protective cream is expected to be used as TSP for military application after further research.

Detoxification Properties of Surface Aminated Cotton Fabric (아민화 표면 처리된 면직물의 제독 성능 연구)

  • Kim, Changkyu;Kwon, Woong;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.73-79
    • /
    • 2020
  • Pursuing the fabric materials for military chemical warfare protective clothing with the improved detoxification properties, this study investigated the simple and effective cotton treatment method using pad-dry-cure process and 3-aminopropyltrimethox ysilane(APTMS) solution for surface amination. Detoxification properties of the untreated and treated cotton fabrics were evaluated via decontamination of chemical warfare agent simulant, DFP(diisopropylfluorophosphate). The surface aminated cotton fabric increased the rate of the hydrolysis of DFP by the factor of 3 and the decontamination ratio reached 88.2% after 24h. Therefore, the surface amination of the cotton fabric with APTMS can be an effective pathway to prepare the material for protective clothing against chemical warfare agents.

Detoxification Properties of Guanidinylated Polyethyleneimine Treated Polypropylene Non-woven Fabric Against Chemical Warfare Agents (구아니딘화 폴리에틸렌이민이 처리된 폴리프로필렌 부직포의 군사용 화학 작용제 제독 특성)

  • Kim, Jiyun;Kwon, Woong;Kim, Changkyu;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study aims to prepare the fabric with detoxification properties against chemical warfare agent by the simple treatment. For this purpose, polypropylene non-woven fabric(PP) was treated with polyethyleneimine(PEI) and guanidinylated PEI and detoxification properties of the guanidinylated PEI treated PP were evaluated using diisopropylfluorophosphate(DFP), as a chemical warfare agent simulant, and compared with the untreated and PEI treated PP. The half-lives of DFP on guanidinylated PEI treated PP and untreated PP were 334 min and 714 min, respectively. The half-life of DFP with guanidinylated PEI treated PP was 53.22% shorter than with untreated PP. This result shows that guanidine group in guanidinylated PEI treated PP was acted as a base catalyst for hydrolysis of DFP and decreased half-life of DFP. Therefore, it is expected that guanidinylated PEI treatment can be an simple pathway to prepare the detoxification fabric material for protective clothing against chemical warfare agents.