Browse > Article
http://dx.doi.org/10.5764/TCF.2021.33.1.1

Detoxification Properties of Guanidinylated Polyethyleneimine Treated Polypropylene Non-woven Fabric Against Chemical Warfare Agents  

Kim, Jiyun (Department of Textile System Engineering, Kyungpook National University)
Kwon, Woong (Department of Textile System Engineering, Kyungpook National University)
Kim, Changkyu (Department of Textile System Engineering, Kyungpook National University)
Jeong, Euigyung (Department of Textile System Engineering, Kyungpook National University)
Publication Information
Textile Coloration and Finishing / v.33, no.1, 2021 , pp. 1-9 More about this Journal
Abstract
This study aims to prepare the fabric with detoxification properties against chemical warfare agent by the simple treatment. For this purpose, polypropylene non-woven fabric(PP) was treated with polyethyleneimine(PEI) and guanidinylated PEI and detoxification properties of the guanidinylated PEI treated PP were evaluated using diisopropylfluorophosphate(DFP), as a chemical warfare agent simulant, and compared with the untreated and PEI treated PP. The half-lives of DFP on guanidinylated PEI treated PP and untreated PP were 334 min and 714 min, respectively. The half-life of DFP with guanidinylated PEI treated PP was 53.22% shorter than with untreated PP. This result shows that guanidine group in guanidinylated PEI treated PP was acted as a base catalyst for hydrolysis of DFP and decreased half-life of DFP. Therefore, it is expected that guanidinylated PEI treatment can be an simple pathway to prepare the detoxification fabric material for protective clothing against chemical warfare agents.
Keywords
guanidine; guanidinylated polyethyleneimine; chemical warfare agent; organic phosphorus nerve agents; diisopropylfluorophosphate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. C. Hudiono, A. L. Miller, P. W. Gibson, A. L. LaFrate, R. D. Noble, and D. L. Gin, A Highly Breathable Organic/inorganic Barrier Material that Blocks the Passage of Mustard Agent Simulants, Industrial and Engineering Chemistry Research, 51(21), 7453(2012).   DOI
2 V. Krylova and N. Dukstiene, Synthesis and Characterization of Ag2S Layers Formed on Polypropylene, Journal of Chemistry, 2013, 11(2013).
3 J. Zhao, D. T. Lee, R. W. Yaga, M. G. Hall, H. F. Barton, I. R. Woodward, and G. N. Parsons, Ultra‐Fast Degradation of Chemical Warfare Agents Using MOF-Nanofiber Kebabs, Angewandte Chemie, 128(42), 13418(2016).   DOI
4 W. Kwon, M. W. Han, and E. K. Jung, Chemical Warfare Agent Simulant Decontamination of Chitosan Treated Cotton Fabric, Textile Coloration and Finishing, 32(1), 51(2020).   DOI
5 G. H. Dennison, M. R. Sambrook, and M. R. Johnston, Interactions of the G-series Organophosphorus Chemical Warfare Agent Sarin and Various Simulants with Luminescent Lanthanide Complexes, RSC Advances, 4(98), 55524(2014).   DOI
6 R. Peltomaa, B. Glahn-Martinez, E. Benito-Pena, and M. C. Moreno-Bondi, Optical Biosensors for Label-free Detection of Small Molecules, Sensors, 18(12), 4126(2018).   DOI
7 J. B. DeCoste and G. W. Peterson, Metal-organic Frameworks for Air Purification of Toxic Chemicals, Chemical Reviews, 114(11), 5695(2014).   DOI
8 L. M. Eubanks, T. J. Dickerson, and K. D. Janda, Technological Advancements for the Detection of and Protection against Biological and Chemical Warfare Agents, Chemical Society Reviews, 36(3), 458(2007).   DOI
9 P. K. Gutch, A. Mazumder, and G. Raviraju, Oxidative Decontamination of Chemical Warfare Agent VX and its Simulant using N,N-dichlorovaleramide, RSC Advances, 6(3), 2295(2016).   DOI
10 B. M. Smith, Catalytic Methods for the Destruction of Chemical Warfare Agents under Ambient Conditions, Chemical Society Reviews, 37(3), 470(2008).   DOI
11 S. Royo, R. Martinez-Manez, F. Sancenon, A. M. Costero, M. Parra, and S. Gil, Chromogenic and Fluorogenic Reagents for Chemical Warfare Nerve Agents' Detection, Chemical Communications, 4839(2007).
12 L. Chen, L. Bromberg, H. Schreuder-Gibson, J. Walker, T. A. Hatton, and G. C. Rutledge, Chemical Protection Fabrics via Surface Oximation of Electrospun Polyacrylonitrile Fiber Mats, Journal of Materials Chemistry, 19(16), 2432(2009).   DOI
13 Y. S. Kye, D. W. Kim, and K. H. Jeong, Recent Trend in Catalysis for Degradation of Toxic Organophosphorus Compounds, Applied Chemistry for Engineering, 30(5), 513(2019).   DOI
14 W. Kwon and E. Jeong, Detoxification Properties of Guanidinylated Chitosan Against Chemical Warfare Agents and Its Application to Military Protective Clothing, Polymers, 12(7), 1461(2020).   DOI
15 L. Bromberg, W. R. Creasy, D. J. McGarvey, E. Wilusz, and T. A. Hatton, Nucleophilic Polymers and Gels in Hydrolytic Degradation of Chemical Warfare Agents, ACS Applied Materials and Interfaces, 7(39), 22001(2015).   DOI
16 V. Stengl, V. Houskova, S. Bakardjieva, N. Murafa, M. Marikova, F. Oplustil, and T. Nemec, Zirconium Doped Nano-dispersed Oxides of Fe, Al and Zn for Destruction of Warfare Agents, Materials Characterization, 61(11), 1080(2010).   DOI
17 E. Lopez-Maya, C. Montoro, L. M. Rodriguez-Albelo, S. D. A. Cervantes, A. A. Lozano-Perez, J. L. Cenis, and J. A. Navarro, Textile/Metal-Organic-Framework Composites as Self -Detoxifying Filters for Chemical-Warfare Agents, Angewandte Chemie International Edition, 54(23), 6790(2015).   DOI
18 G. Wang, C. Sharp, A. M. Plonka, Q. Wang, A. I. Frenkel, W. Guo, and J. R. Morris, Mechanism and Kinetics for Reaction of the Chemical Warfare Agent Simulant, DMMP (g), with Zirconium(IV) MOFs: An Ultrahigh-Vacuum and DFT Study, The Journal of Physical Chemistry C, 121(21), 11261(2017).   DOI
19 J. Han, Y. Xu, Y. Su, X. She, and X. Pan, Guanidine-catalyzed Henry Reaction and Knoevenagel Condensation, Catalysis Communications, 9(10), 2077(2008).   DOI
20 W. Kwon, C. Kim, J. Kim, J. Kim, and J. E. Jeong, Facile Fabric Detoxification Treatment Method Using Microwave and Polyethyleneimine Against Nerve Gas Agents, Polymers, 12(12), 2861(2020).   DOI
21 A. E. Miller and J. J. Bischoff, A Facile Conversion of Amino Acids to Guanidino Acids, Synthesis(Stuttgart), 1986(9), 777(1986).   DOI
22 A. Kasprzak, M. Poplawska, M. Bystrzejewski, O. Labedz, and I. P. Grudzinski, Conjugation of Polyethylenimine and its Derivatives to Carbon-encapsulated Iron Nanoparticles, RSC Advances, 5(104), 85556(2015).   DOI
23 P. Sahariah, B. M. Oskarsson, M. A. Hjalmarsdottir, and M. Masson, Synthesis of Guanidinylated Chitosan with the Aid of Multiple Protecting Groups and Investigation of Antibacterial Activity, Carbohydrate Polymers, 127, 407(2015).   DOI
24 Y. K. Kim, H. S. Yoo, M. C. Kim, H. C. Hwang, and S. G. Ryu, Decontamination of Chemical Warfare Agent Simulants using Vapor-phase Hydrogen Peroxide, Korean Chemical Engineering Research, 52(3), 360(2014).   DOI
25 K. Jeong, J. Shim, W. Y. Chung, Y. S. Kye, and D. Kim, Diisopropyl Fluorophosphate(DFP) Degradation Activity using Transition Metal-dipicolylamine Complexes, Applied Organometallic Chemistry, 32(7), e4383(2018).   DOI
26 W. B. Ying, S. Kim, M. W. Lee, N. Y. Go, H. Jung, S. G. Ryu, B. Lee, and K. J. Lee, Toward a Detoxification Fabric Against Nerve Gas Agents: Guanidine-functionalized Poly[2-(3-butenyl)-2-oxazoline]/Nylon-6,6 Nano-fibers, RSC Advances, 25(7), 15246(2017).
27 H. L. Schreuder-Gibson, Q. Truong, J. E. Walker, J. R. Owens, J. D. Wander, and W. E. Jones, Chemical and Biological Protection and Detection in Fabrics for Protective Clothing, MRS Bulletin, 28(8), 574(2003).   DOI