Browse > Article
http://dx.doi.org/10.5764/TCF.2020.32.1.51

Chemical Warfare Agent Simulant Decontamination of Chitosan Treated Cotton Fabric  

Kwon, Woong (Department of Textile System Engineering, Kyungpook National University)
Han, Minwoo (Department of Textile System Engineering, Kyungpook National University)
Jeong, Euigyung (Department of Textile System Engineering, Kyungpook National University)
Publication Information
Textile Coloration and Finishing / v.32, no.1, 2020 , pp. 51-56 More about this Journal
Abstract
This study aims to pursue the multi-functional textile finishing method to detoxify chemical warfare agent by simply treating the well-known antimicrobial agent, chitosan, to cotton fabric. For this purpose, DFP(diisopropylfluorophosphate) was sele cted as a chemical warfare agent simulant and cotton fabric was treated with 0.5, 1.0, and 2wt% chitosan solution in 1wt% acetic acid. DFP decontamination properties of the chitosan treated cotton fabrics were evaluated and compared with the untreated cotton fabric. The chitosan treated cotton fabrics showed better DFP decontamination than the untreated cotton. Decontamination properties of the chitosan treated cotton fabrics improved with the increased chitosan solution used. Especially, the cotton fabrics treated with 2wt% chitosan solution showed 5 times more DFP decontamina tion than the untreated cotton fabrics. This suggested that the chitosan treated fabric has potential to be used as a material for protective clothing with chemical warfare agent detoxifying and antimicrobial properties.
Keywords
chitosan; protective clothes; chemical warfare agent; organic phosphorus nerve agents; diisopropylfluorophosphate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Ganesan, S. K. Raza, and R. Vijayaraghavan, Chemical Warfare Agents, Journal of Pharmacy and Bioallied Sciences, 2(3), 166(2010).   DOI
2 S. L. Bartelt-Hunt, D. R. U. Knappe, and M. A. Barlaz, A Review of Chemical Warfare Agent Simulants for the Study of Environmental Behavior, Critical Reviews in Environmental Science and Technology, 38(2), 112(2008).   DOI
3 N. Munro, Toxicity of the Organophosphate Chemical Warfare Agents GA, GB, and VX: Implications for Public Protection, Environmental Health Perspectives, 102(1), 18(1994).   DOI
4 M. Boopathi, B. Singh, and R. Vijayaraghavan, A Review on NBC Body Protective Clothing, The Open Textile Journal, 1(1), 1(2008).   DOI
5 M. A. R. Bhuiyan, L. Wang, A. Shaid, R. A. Shanks, and J. Ding, Advances and Applications of Chemical Protective Clothing System, Journal of Industrial Textiles, 49(1), 97(2019).   DOI
6 W. B. Ying, S. Kim, M. W. Lee, N. Y. Go, H. Jung, S. G. Ryu, B. Lee, and K. J. Lee, Toward a Detoxification Fabric Against Nerve Gas Agents: Guanidine-functionalized Poly[2-(3-butenyl)-2-oxazoline]/Nylon-6,6 Nanofibers, RSC Advances, 25(7), 15246(2017).
7 S. Kim, W. B. Ying, H. Jung, S. G. Ryu, B. Lee, and K. J. Lee, Zirconium Hydroxide-coated Nanofiber Mats for Nerve Agent Decontamination, Chemistry an Asian Journal, 12(6), 698(2017).   DOI
8 J. Zhao, D. T. Lee, R. W. Yaga, M. G. Hall, H. F. Barton, I. R. Woodward, C. J. Oldham, H. J. Walls, G. W. Peterson, and G. N. Parsons, Ultra-fast Degradation of Chemical Warfare Agents Using MOF-Nanofiber Kebabs, Angewandte Chemie, 55(42), 1(2016).   DOI
9 D. B. Dwyer, D. T. Lee, S. Boyer, W. E. Bernier, G. N. Parsons, and W. E. J. Jr, Toxic Organophosphate Hydrolysis Using Nanofiber-Templated UiO-66-$NH_2$ Metal-Organic Framework Polycrystalline Cylinders, ACS Applied Materials and Interfaces, 10(30), 25794(2018).   DOI
10 R. T. Delfino, T. S. Ribeiro, and J. D. Figueroa-Villar, Organophosphorus Compounds as Chemical Warfare Agents: a Review, Journal of the Brazilian Chemical Society, 20(3), 407(2009).   DOI
11 F. Croisier and C. Jerome, Chitosan-Based Biomaterials for Tissue Engineering, European Polymer Journal, 49(4), 780(2013).   DOI
12 K. Kim, O. G. Tsay, D. A. Atwood, and D. G. Churchill, Destruction and Detection of Chemical Warfare Agents, Chemical Reviews, 111(9), 3245(2011).
13 S. S. Talmage, A. P. Watson, V. Hauschild, N. B. Munro, and J. King, Chemical Warfare Agent Degradation and Decontamination, Current Organic Chemistry, 11(3), 285(2007).   DOI
14 M. Rinaudo, Chitin and Chitosan: Properties and Applications, Progress in Polymer Science, 31(7), 603(2006).   DOI
15 N. R. Sudarshan, D. G. Hoover, and D. Knorr, Antibacterial Action of Chitosan, Food Biotechnology, 6(3), 257(1992).   DOI
16 E. Khor and L. Y. Lim, Implantable Applications of Chitin and Chitosan, Biomaterials, 24(13), 2339(2003).   DOI
17 B. Sakthivel and A. Dhakshinamoorthy, Chitosan as a Reusable Solid Base Catalyst for Knoevenagel Condensation Reaction, Journal of Colloid and Interface Science, 485(1), 75(2017).   DOI
18 S. N. Rao, D. C. Mohan, and S. Adimurthy, Chitosan: An Efficient Recyclable Catalyst for Transamidation of Carboxamides with Amines under Neat Conditions, Green Chemistry, 16(9), 4122(2014).   DOI
19 Y. K. Kim, H. S. Yoo, M. C. Kim, H. C. Hwang, and S. G. Ryu, Decontamination of Chemical Warfare Agent Simulants using Vapor-phase Hydrogen Peroxide, Korean Chemical Engineering Research, 52(3), 360(2014).   DOI
20 D. R. Heiss, D. W. Zehnder, D. A. Jett, G. E. P. Jr, D. T. Yeung, and B. N. Brewer, Synthesis and Storage Sability of Diisopropylfluorophosphate, Journal of Chemistry, 2016(1), 5(2016).