Browse > Article
http://dx.doi.org/10.5764/TCF.2020.32.2.73

Detoxification Properties of Surface Aminated Cotton Fabric  

Kim, Changkyu (Department of Textile System Engineering, Kyungpook National University)
Kwon, Woong (Department of Textile System Engineering, Kyungpook National University)
Jeong, Euigyung (Department of Textile System Engineering, Kyungpook National University)
Publication Information
Textile Coloration and Finishing / v.32, no.2, 2020 , pp. 73-79 More about this Journal
Abstract
Pursuing the fabric materials for military chemical warfare protective clothing with the improved detoxification properties, this study investigated the simple and effective cotton treatment method using pad-dry-cure process and 3-aminopropyltrimethox ysilane(APTMS) solution for surface amination. Detoxification properties of the untreated and treated cotton fabrics were evaluated via decontamination of chemical warfare agent simulant, DFP(diisopropylfluorophosphate). The surface aminated cotton fabric increased the rate of the hydrolysis of DFP by the factor of 3 and the decontamination ratio reached 88.2% after 24h. Therefore, the surface amination of the cotton fabric with APTMS can be an effective pathway to prepare the material for protective clothing against chemical warfare agents.
Keywords
surface amination; silane treatment; chemical warfare agent; organic phosphorus nerve agents; diisopropylfluorophosphate;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 K. Ganesan, S. K. Raza, and R. Vijayaraghavan, Chemical Warfare Agents, Journal of Pharmacy and Bioallied Sciences, 2(3), 166(2010).   DOI
2 K. Kim, O. G. Tsay, D. A. Atwood, and D. G. Churchill, Destruction and Detection of Chemical Warfare Agents, Chemical Reviews, 111(9), 3245(2011).
3 F. R. Sidell, "Military Preventive Medicine: Mobilization and Deployment, Volume 1", Department of Defense, Washington, p.611, 1992.
4 M. Bhuiyan, L. Wang, A. Shaid, R. A. Shanks, and J. Ding, Advances and Applications of Chemical Protective Clothing System, Journal of Industrial Textiles, 49(1), 97(2019).   DOI
5 R. T. Delfino, T. S. Ribeiro, and J. D. Figueroa-Villar, Organophosphorus Compounds as Chemical Warfare Agents: a Review, Journal of the Brazilian Chemical Society, 20(3), 407 (2009).   DOI
6 Y. S. Kye, D. W. Kim, and K. H. Jeong, Recent Trend in Catalysis for Degradation of Toxic Organophosphorus Compounds, Applied Chemistry for Engineering, 30(5), 513(2019).   DOI
7 Y. S. Kye, W. Y. Chung, D. W. Kim, Y. K. Park, S. U. Song, and K. H. Jeong, A Study on the Decomposition of DFP using Cu(II)-Chitosan Complex, Journal of the Korea Institute of Military Science and Technology, 15(5), 699(2012).   DOI
8 Y. S. Kye, K. H. Jeong, and W. Y. Chung, Decomposition Studies of DFP Using Transition Metal Catalysts, Applied Chemistry for Engineering, 21(1), 1(2010).
9 A. Gugliuzza and E. Drioli, A Review on Membrane Engineering for Innovation in Wearable Fabrics and Protective Textiles, Journal of Membrane Science, 446, 350(2013).   DOI
10 W. Kwon, M. Han, and E. Jung, Chemical Warfare Agent Simulant Decontamination of Chitosan Treated Cotton Fabric, Textile Coloration and Finishing, 32(1), 51(2020).   DOI
11 S. Kim, W. B. Ying, H. Jung, S. G. Ryu, B. Lee, and K. J. Lee, Zirconium Hydroxide-coated Nanofiber Mats for Nerve Agent Decontamination, Chemistry, an Asian Journal, 12(6), 698(2017).   DOI
12 M. K. Kim, S. H. Kim, M. P. S. G. Ryu, and H. Jung, Degradation of Chemical Warfare Agents over Cotton Fabric Functionalized with UiO-66-$NH_2$, RSC Advances, 8(72), 41633(2018).   DOI
13 M. Boopathi, B. Singh, and R. Vijayaraghavan, A Review on NBC Body Protective Clothing, The Open Textile Journal, 1(1), 1(2008).   DOI
14 S. L. Bartelt-hunt, D. R. Knappe, and M. A. Barlaz, A Review of Chemical Warfare Agent Simulants for the Study of Environmental Behavior, Criticla Reviews in Environmental Science and Technology, 38(2), 112(2008).   DOI
15 W. B. Ying, S. Kim, M. W. Lee, N. Y. Go, H. Jung, S. G. Ryu, B. Lee, and K. J. Lee, Toward a Detoxification Fabric Against Nerve Gas Agents: Guanidine-Functionalized Poly[2-(3-butenyl)-2-oxazoline]/Nylon-66 Nanofibers, RSC Advances, 7(25), 15246(2017).   DOI
16 R. Guo, Y. Li, J. Lan, S. Jiang, T. Liu, and W. Yan, Microwave-Assisted Synthesis of Silver Nanoparticles on Cotton Fabric Modified with 3-Aminopropyltrimethoxysilane, Journal of Applied Polymer Science, 130(6), 3862(2013).   DOI
17 Y. K. Kim, H. S. Yoo, M. C. Kim, H. C. Hwang, S. G. Ryu, and H. W. Lee, Decontamination of Chemical Warfare Agent Simulants using Vapor-phase Hydrogen Peroxide, Korean Chem. Eng. Res., 52(3), 360(2014).   DOI
18 D. B. Dwyer, D. T. Lee, S. Boyer, W. E. Bernie, and W. E. Jones, Toxic Organophosphate Hydrolysis Using Nanofiber-Templated UiO-66-$NH_2$ Metal-Organic Framework Polycrysta lline Cylinders, Applied Materials and Interfaces, 10(30), 25794(2018).   DOI
19 T. Yokoi, Y. Kubota, and T. Tatsumi, Amino-functionalized Mesoporous Silica as Base Catalyst and Adsorbent, Applied Catalyst A: General, 421, 14(2012).