DOI QR코드

DOI QR Code

Influence of the Micropore Structures of PAN-based Activated Carbon Fibers on Nerve Agent Simulant Gas (DMMP) Sensing Property

PAN계 활성탄소섬유의 미세기공 구조가 신경작용제 유사가스(DMMP) 감응 특성에 미치는 영향

  • Kang, Da Hee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Min-Ji (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Jo, Hanjoo (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Choi, Ye Ji (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 강다희 (충남대학교 응용화학공학과) ;
  • 김민지 (충남대학교 응용화학공학과) ;
  • 조한주 (충남대학교 응용화학공학과) ;
  • 최예지 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2017.12.18
  • Accepted : 2017.12.28
  • Published : 2018.04.10

Abstract

In this study, the influence of microporous structures of activated carbon fibers (ACFs) on dimethyl methylphosphonate (DMMP) gas sensing properties as a nerve agent simulant was investigated. The pore structure was given to carbon fibers by chemical activation process, and an electrode was fabricated for gas sensors by using these fibers. The PAN based ACF electrode, which is an N-type semiconductor, received electrons from a reducing gas such as DMMP, and then electrical resistance of its electrode finally decreased because of the reduced density of electron holes. The sensitivity of the fabricated DMMP gas sensor increased from 1.7% to 5.1% as the micropore volume increased. It is attributed that as micropores were formed for adsorbing DMMP whose molecular size was 0.57 nm, electron transfer between DMMP and ACF was facilitated. In conclusion, it is considered that the appropriate pore structure control of ACFs plays an important role in fabricating the DMMP gas sensor with a high sensitivity.

본 실험에서는 활성탄소섬유의 미세기공구조가 신경작용제 유사가스인 dimethyl methylphosphonate (DMMP) 감응 특성에 미치는 영향을 고찰하였다. 탄소섬유에 화학적 활성화법을 이용하여 기공구조를 부여하였고, 이를 이용하여 가스센서용 전극을 제조하였다. N형 반도체인 polyacrylonitrile (PAN)계 활성탄소섬유 기반 전극은 환원성 가스인 DMMP로부터 전자를 받아 정공의 밀도 감소로 인하여 전기저항이 감소하게 되었다. DMMP 가스센서의 민감도는 미세기공 부피가 증가함에 따라 1.7%에서 5.1%까지 증가하였다. 이는 분자 크기가 0.57 nm인 DMMP를 흡착하기에 적합한 미세기공이 형성됨에 따라, DMMP와 활성탄소섬유간의 전자 이동이 용이해졌기 때문이라 사료된다. 결론적으로, 높은 감도의 DMMP 가스센서를 제조하기 위해서는 적절한 기공구조 조절이 중요한 역할을 한다고 판단된다.

Keywords

References

  1. Y. Zhu, Z. Cheng, Q. Xiang, X. Chen, and J. Xu, Synthesis of functionalized mesoporous $TiO_2-SiO_2$ with organic fluoroalcohol as high performance DMMP gas sensor, Sens. Actuators B, 248, 785-792 (2017). https://doi.org/10.1016/j.snb.2016.10.080
  2. Z. Ying, Y. Jiang, X. Du, G. Xie, J. Yu, and H. Wang, PVDF coated quartz crystal microbalance sensor for DMMP vapor detection, Sens. Actuators B, 125, 167-172 (2007). https://doi.org/10.1016/j.snb.2007.02.002
  3. R. Yoo, S. Yoo, D. Lee, J. Kim, S. Cho, and W. Lee, Highly selective detection of dimethyl methylphosphonate (DMMP) using CuO nanoparticles/ZnO flowers heterojunction, Sens. Actuators B, 240, 1099-1105 (2017). https://doi.org/10.1016/j.snb.2016.09.028
  4. C. Majumder, Adsorption and decomposition of dimethyl methylphosphonate on pristine and mono-vacancy defected graphene: A first principles study, Appl. Chem. Eng., 418, 318-327 (2017).
  5. E. Brunol, F. Berger, M. Fromm, and R. Planade, Detection of dimethyl methylphosphonate (DMMP) by tin dioxide-based gas sensor: Response curve and understanding of the reactional mechanism, Sens. Actuators B, 120, 35-41 (2006). https://doi.org/10.1016/j.snb.2006.01.040
  6. T. Ueda, H. Abe, K. Kamada, S. R. Bishop, H. L. Tuller, T. Hyodo, and Y. Shimizu, Enhanced sensing response of solid-electrolyte gas sensors to toluene: Role of composite Au/metal oxide sensing electrode, Sens. Actuators B, 252, 268-276 (2017). https://doi.org/10.1016/j.snb.2017.05.172
  7. M. Zhao, M. H. Wong, H. C. Man, and C. W. Ong, Resistive hydrogen sensing response of Pd-decorated ZnO "nanosponge" film, Sens. Actuators B, 249, 624-631 (2017). https://doi.org/10.1016/j.snb.2017.04.020
  8. J. Zhang, C. Zhang, J. Xia, Q. Li, D. Jiang, and X. Zheng, Mixed-potential $NH_3$ sensor based on $Ce_{0.8}Gd_{0.2}O_{1.9}$ solid electrolyte, Sens. Actuators B, 249, 76-82 (2017). https://doi.org/10.1016/j.snb.2017.04.035
  9. L. Zhu and W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: A review, Sens. Actuators A, 267, 242-261 (2017). https://doi.org/10.1016/j.sna.2017.10.021
  10. T. Alizadeh and L. H. Soltani, Reduced graphene oxide-based gas sensor array for pattern recognition of DMMP vapor, Sens. Actuators B, 234, 361-370 (2016). https://doi.org/10.1016/j.snb.2016.04.165
  11. V. V. Kondalkar, X. Li, S. S. Yang, and K. Lee, Highly efficient current sensor built on a chip based on nanocrystalline NiFe/Cu/NiFe thin film, J. Ind. Eng. Chem., 53, 416-424 (2017). https://doi.org/10.1016/j.jiec.2017.05.014
  12. J. S. Im, S. C. Kang, B. C. Bai, T.-S. Bae, S. J. In, E. Jeong, S.-H. Lee, and Y.-S. Lee, Thermal fluorination effects on carbon nanotubes for preparation of a high-performance gas sensor, Carbon, 49, 2235-2244 (2011). https://doi.org/10.1016/j.carbon.2011.01.054
  13. R. Yoo, J. Kim, M.-J. Song, W. Lee, and J. S. Noh, Nano-composite sensors composed of single-walled carbon nanotubes and polyaniline for the detection of a nerve agent simulant gas, Sens. Actuators B, 209, 444-448 (2015). https://doi.org/10.1016/j.snb.2014.11.137
  14. M. M. Runa, D. S. Ibrahim, M. R. Mohd Asyraf, S. Jarin, and A. Tomal, A review on recent advances of CNTs as gas sensors, Sens. Rev., 37, 127-136 (2017). https://doi.org/10.1108/SR-10-2016-0230
  15. M.-S. Park, S. Lee, M.-J. Jung, H. G. Kim, and Y.-S. Lee, NO gas sensing ability of activated carbon fibers modified by an electron beam for improvement in the surface functional group, Carbon lett., 20, 19-25 (2016). https://doi.org/10.5714/CL.2016.20.019
  16. S. Lee, M.-S. Park, M.-J. Jung, and Y.-S. Lee, NO gas sensing of ACFs treated by E-beam irradiation in $H_2O_2$ solution, Trans. Korean Hydrogen Energy Soc., 27, 298-305 (2016). https://doi.org/10.7316/KHNES.2016.27.3.298
  17. J. S. Im, S. C. Kang, S.-H. Lee, and Y.-S. Lee, Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification, Carbon, 48, 2573-2581 (2010). https://doi.org/10.1016/j.carbon.2010.03.045
  18. S.-H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka, and I. Mochida, KOH activation of carbon nanofibers, Carbon, 42, 1723-1729 (2004). https://doi.org/10.1016/j.carbon.2004.03.006
  19. S. Lee, M.-J. Jung, K. M. Lee, and Y.-S. Lee, Nitric oxide sensing property of gas sensor based on activated carbon fiber radiated by electron-beam, Appl. Chem. Eng., 28, 299-305 (2017).
  20. D. Lee, S. Cho, Y. Kim, and Y.-S. Lee, Influence of the pore properties in carbon dioxide adsortption of PAN-based activated carbon nanofibers, Polymer (Korea), 37, 592-599 (2013). https://doi.org/10.7317/pk.2013.37.5.592
  21. D.-Y. Lee, G.-H. An, and H.-J. Ahn, High-surface-area tofu based activated porous carbon for electrical double-layer capacitors, J. Ind. Eng. Chem., 52, 121-127 (2017). https://doi.org/10.1016/j.jiec.2017.03.032
  22. X. Lu, V. Nguyen, X. Zeng, B. J. Elliott, and D. L. Gin, Selective rejection of a water-soluble nerve agent stimulant using a nanoporous lyotropic liquid crystal-butyl rubber vapor barrier material: Evidence for a molecular size-discrimination mechanism, J. Membr. Sci., 318, 397-404 (2008). https://doi.org/10.1016/j.memsci.2008.03.006
  23. H. Fu, Y. Jiang, J. Ding, J. Zhang, M. Zhang, Y. Zhu, and H. Li, Zinc oxide nanoparticle incorporated graphene oxide as sensing coating for interferometric optical microfiber for ammonia gas detection, Sens. Actuators B, 254, 239-247 (2018). https://doi.org/10.1016/j.snb.2017.06.067
  24. S. W. Lee, W. Lee, Y. Hong, G. Lee, and D. S. Yoon, Recent advances in carbon material-based $NO_2$ gas sensors, Sens. Actuators B, 255, 1788-1804 (2017).
  25. Z. Li, Z. Lin, N. Wang, J. Wang, W. Liu, K. Sun, Y. Q. Fu, and Z. Wang, High precision $NH_3$ sensing using network nano-sheet $Co_3O_4$ arrays based sensor at room temperature, Sens. Actuators, B, 235, 222-231 (2016). https://doi.org/10.1016/j.snb.2016.05.063
  26. B. C. Bai and T.-S. Bae, Pore structure control of activated carbon fiber for CO gas sensor electrode, Carbon lett., 18, 76-79 (2016). https://doi.org/10.5714/CL.2016.18.076
  27. S. C. Kang, J. S. Im, S.-H. Lee, T.-S. Bae, and Y.-S. Lee, High-sensitivity gas sensor using electrically conductive and porosity-developed carbon nanofiber, Colloids Surf. A, 384, 297-303 (2011). https://doi.org/10.1016/j.colsurfa.2011.04.001
  28. S. M. Kanan, A. Waghe, B. L. Jensen, and C. P. Tripp, Dual $WO_3$ based sensors to selectively detect DMMP in the presence of alcohols, Talanta, 72, 401-407 (2007). https://doi.org/10.1016/j.talanta.2006.10.046
  29. N. Kobayashi, T. Enoki, C. Ishii, K. Kaneko, and M. Endo, Gas adsorption effects on structural and electrical properties of activated carbon fibers, J. Chem. Phys., 109, 1983-1990 (1998). https://doi.org/10.1063/1.476774