• Title/Summary/Keyword: nematode mortality

Search Result 80, Processing Time 0.03 seconds

Efficacy of Pesticides and Growth Hormones against Root Disease Complex of Mulberry (Morus alba L.)

  • Naik, Vorkady Nishitha;Sharma, Dinesh Dutta
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.2
    • /
    • pp.101-106
    • /
    • 2007
  • During mulberry cultivation, root disease complex caused by the association of root knot nematode (Meloidogyne incognita) with root rot pathogens like Fusarium solani and Botryodiplodia theobromae poses serious loss in leaf production. Therefore, an attempt was made to assess the efficacy of eight pesticides (Metayalaxyl+Mancozeb, Thiophanate methyl, Mancozeb, Bitertanol, Phenomiphos, Phorate, Thionazin & Carbofuran) and two growth hormones (Salicylic acid and Indole 3 acetic acid) at 0.1 and 0.2% concentrations under in vitro conditions against nematode (hatching of eggs and mortality of larvae) and root rot pathogens (poisoned food technique) for short listing the treatments to develop an IDM strategy. Results revealed that among the pesticides and growth hormones, Carbofuran followed by Salicylic acid were found to be effective at 0.2% concentration against both nematode and pathogenic fungi. Both the chemicals inhibited the hatching of nematode eggs by 83.5-78.9% and 80-76% larval mortality over the control and reduced the mycelial growth of both the pathogenic fungi to an extent of 75.5-77.8%. Though Mancozeb inhibited both the pathogenic fungi strongly (77-80%), it did not show any effectiveness against nematode. The rest of the chemicals were found either moderately or poorly effective in reducing the growth of pathogenic fungi, hatching of nematode eggs and enhancing the mortality of larvae. The two effective chemicals viz., Carbofuran and Salicylic acid, which rated as strong inhibitors against both nematode and pathogenic fungi, can be exploited in developing an IDM package as one of the component for better management of root disease complex in mulberry.

Efficacy of Different Seed Kernels against Root Knot Nematode Meloidogyne incognita in Mulberry

  • Chowdary, N.B.;Mukherjee, Sanchayita
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.6 no.2
    • /
    • pp.133-138
    • /
    • 2003
  • Five seed kernel namely, Neem (Azadirachta indica A. Juss.), Pongamia (Pongamia glabra L. Pierre), Tamarind (Tamarindus indica L.), Mahua (Madhuca indica Gmel.) and Shikakai (Acacia cancinna De.) were tested against hatching of eggs and larval mortality of Meloidogyne incognita causing root knot disease in mulberry along with Furadan (Carbofuran) and Bionema (a bioformulation developed from Verticillium chlamydosporium) for comparison. Results revealed that highest hush-up of hatching was observed in Neem (77.40%) and Pongamia (75.99%) seed kernel extracts at 100% concentration over the check. Similarly, highest larval mortality was observed in Neem and Pongamia by 76.00% and 74.50%, respectively at 100% concentration after 72 hrs of exposure period. Pot culture studies revealed that pre-application of seed kernel powders (20 days before inoculation of nematode) found to be more effective in controlling the root knot disease than post application. In pre application of seed kernel powders, maximum reduction of root knots was observed in case of Neem seed kernel powder (54.85%) followed by Pongamia (51.9%). Similar trend was also observed in reduction of egg masses/plant and nematode population /250 cc soil. Rest of the seed kernel extracts was found to be less effective in suppression of hatching, enhancing the larval mortality and controlling the root knot disease. However, application of Furadan and Bionema tested for the comparison were found to be more effective than seed kernel powders. The generated information seems to be useful in developing an ecofriendly integrated approach for the control of root knot nematode disease in mulberry.

Screening of Botanicals Against Root Knot Disease Complex in Mulberry (Morus indica L.)

  • Naik V. Nishitha;Sharma D.D.;Govindaiah Govindaiah;Chowdary N.B.;Mala V.R.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.14 no.1
    • /
    • pp.57-61
    • /
    • 2007
  • For developing an integrated eco-friendly package against root knot disease complex of mulberry caused by the association of Meloidogyne incognita with Fusarium solani and F. oxysporum causing serious loss in terms of leaf yield and quality during cultivation, twenty botanical extracts at 5, 10 & 20% concentrations were screened under in vitro conditions. Among the extracts, Allium sativum followed by Lasownia inermis were found to be effective at 20% concentration against both the virulent fungi and nematode. Both the extracts reduced the mycelial growth of virulent fungi to an extent of 76-100%, inhibited the hatching of nematode eggs by 80-90% and 76-85% larval mortality over the control. The other extracts were found either moderately or poorly effective in reducing the growth of fungi, hatching of nematode eggs and enhancing the mortality of larvae. The two effective botanical extracts, which rated as strong inhibitors against both nematode and virulent fungi, can be utilized in developing an integrated ecofriendly technology for better management of root knot disease complex in mulberry.

Development of a Redox Dye-Based Rapid Colorimetric Assay for the Quantitation of Viability/Mortality of Pine Wilt Nematode

  • Han, Kyeongmin;Lee, Jaejoon;Shanmugam, Gnanendra;Lee, Sun Keun;Jeon, Junhyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1117-1123
    • /
    • 2019
  • Control of pine wilt disease, which is caused by pine wilt nematode Bursaphelenchus xylophilus, is heavily dependent on the use of chemicals such as abamectin. Although such chemicals are highly effective, demands for alternatives that are derived preferentially from natural sources, are increasing out of environmental concerns. One of the challenges to discovery of alternative control agents is lack of fast and efficient screening method that can be used in a high-throughput manner. Here we described the development of colorimetric assay for the rapid and accurate screening of candidate nematicidal compounds/biologics targeting B. xylophilus. Contrary to the conventional method, which relies on laborious visual inspection and counting of nematode population under microscope, our method utilizes a redox dye that changes its color in response to metabolic activity of nematode population in a given sample. In this work, we optimized parameters of our colorimetric assay including number of nematodes and amount of redox dye, and tested applicability of our assay for screening of chemicals and biologics. We demonstrated that our colorimetric assay can be applied to rapid and accurate quantification of nematode viability/mortality in a nematode population treated with candidate chemicals/biologics. Application of our method would facilitate high-throughput endeavors aiming at finding environment-friendly control agents for deadly disease of pine trees.

Efficacy of Different Nematicidal Compounds on Hatching and Mortality of Heterodera schachtii Infective Juveniles

  • Kim, Jeongeun;Mwamula, Abraham Okki;Kabir, Faisal;Shin, Jin Hee;Choi, Young Hwa;Lee, Jae-Kook;Lee, DongWoon
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.293-299
    • /
    • 2016
  • Effect of nematicidal compounds on hatchability of sugar beet cyst nematode, Heterodera schachtii and its infective juveniles was investigated. The sugar beet cyst nematode was isolated from Chinese cabbage field in Samcheok in Korea. Acute toxicity of nematicidal compounds against infective juveniles was also tested to find the $LC_{50}$ by exposing juveniles to given dilutions of each compound. Hatchability and mortality of infective juveniles of H. schachtii were influenced by nematicidal compounds (Fluopyram 40% SC, imicyafos 30% SC, fosthiazate 30% SC, abamectine 1.68% SC, terthiophene, and Eclipta prostrata extract). Fluopyram and imicyafos yielded the lowest rates of hatching. Total hatched infective juveniles were significantly different among nematicidal compounds. Positive correlation in percentage reduction of hatching was observed in fluopyram. Furthermore, the highest mortality was also observed in the treatments of fluopyram and imicyafos ($LC_{50}$ of 0.0543 and 0.0178 ppm respectively). The study, therefore, demonstrated available alternative nematicidal compounds which could be used in the control of H. schachtii.

Management of Tomato Root-knot Nematode Meloidogyne incognita by Plant Extracts and Essential Oils

  • Abo-Elyousr, Kamal A.M.;Awad, Magd El-Morsi;Gaid, M.A. Abdel
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.189-192
    • /
    • 2009
  • The effect of plant extracts of eucalyptus (Eucalyptus chamadulonsis), garlic (Allium sativium), marigold (Tagetes erecta) and neem (Azadirachta indica) and essential oils were tested on the suppression of root-knot nematode Meloidogyne incognita under greenhouse and field conditions. In vitro study, all tested treatments had nematicidal effect on nematode juveniles after 24 and 48 hours from exposures. The highest percentage of nematode mortality was achieved by application of neem extract (65.4%), essential oils (64.4%) and marigold extract (60.5%), followed by garlic and eucalyptus extracts (38.7-39.5%). Under greenhouse and field conditions, neem extract and essential oils treatments were more effective in reducing population numbers of the M. incognita in soil and root gall index compared to other treatments. In field experiments, the maximum protection of tomato plant against root-knot nematode was obtained by application of neem and essential oil treatments, 44.2 and 32.6%, respectively.

Identification of 2-methylbutyric Acid as a Nematicidal Metabolite, and Biocontrol and Biofertilization Potentials of Bacillus pumilus L1

  • Lee, Yong-Seong;Cho, Jeong-Yong;Moon, Jae-Hak;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.401-408
    • /
    • 2016
  • The present study described the isolation of 2-methylbutyric acid (2-MBA) produced from Bacillus pumilus L1, to subsequently investigate its nematicidal activity for the control of the root-knot nematode. The results showed that 2-MBA could be purified by chromatographic techniques and was identified using nuclear magnetic resonance and liquid chromatography-mass spectrometry. Crude extract and partially purified compounds had a significant effect on the inhibition of egg hatchability and second-stage juvenile (J2) mortality. A dose-dependent effect of 2-MBA was observed for J2 mortality and egg hatchability. Egg hatchability was 69.2%, 59.9%, 32.7%, and 0.0% at 125, 250, 500, and $1000{\mu}g\;mL^{-1}$ of 2-MBA after 4 d of incubation, respectively. Meanwhile, J2 mortality was in the range of 24.4%-100.0% after 2 d of incubation, depending on the concentrations of 2-MBA used. A pot experiment also demonstrated that treatment of B. pumilus L1 culture caused a significant reduction in the number of galls, egg masses, and J2 population than that of the tap water (TW) control. However, as the B. pumilus L1 culture concentration was decreased, the efficacy of nematode control by treatment of B. pumilus L1 culture was reduced compared to that of TW. B. pumilus L1 inoculation at different concentrations also promoted cucumber plant growth. Therefore, our study demonstrated the potential of 2-MBA from B. pumilus L1 as a biocontrol agent against the root-knot nematode and a plant growth promoter for cucumber plants.

Effect of Acetic and Lactic Acid Mixtures on Control of Quarantine Nematode, Bursaphelenchus xylophilus, in Exporting Cymbidium (초산과 젖산 혼합액에 의한 수출용 심비디움 검역선충 Bursaphelenchus xylophilus의 방제 효과)

  • Seo, Yunhee;Park, Jiyeong;Cho, Myoung Rae;Chun, Jae Yong;Kim, Young Ho
    • Research in Plant Disease
    • /
    • v.20 no.3
    • /
    • pp.227-233
    • /
    • 2014
  • The mixture (MX) of acetic acid (AA) and lactic acid (LA) was examined for its effectiveness in the control of the pine wood nematode Bursaphelenchus xylophilus contaminated in cymbidium culture medium. Nematode mortality in vitro was nearly 100% in AA and MX at the concentrations of 5.0-1.0% (pH 2.6 - 4.2) and in LA only at 5.0% (pH 3.5), but lowered at concentrations of 0.5-0.1% (pH 5.1-6.9) more significantly in LA than AA and MX. MX of most concentrations caused higher nematode mortality than the average response to AA and LA. All treatments of MX (0.5% and 0.25%), fosthiazate (standard and double concentrations) and culture dilution of Paenibacillus polymyxa GBR-1 ($10^7$colony-forming units/ml) reduced significantly the nematode populations in the cymbidium culture medium, compared to non-treatment control, with no significant difference among the treatments. No phytotoxicity occurred in all treatments. pH of the medium with the time after treatment and growths of 2-year-old cymbidium were not significantly different among treatments. Considering the safety and price of the organic acids, use of MX in the processes for culturing cymbidium may be a practically reliable and eco-friendly way in the control of the quarantine nematode in cymbidium.

Control of Meloidogyne incognita Using Mixtures of Organic Acids

  • Seo, Yunhee;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.450-455
    • /
    • 2014
  • This study sought to control the root-knot nematode (RKN) Meloidogyne incognita using benign organo-chemicals. Second-stage juveniles (J2) of RKN were exposed to dilutions (1.0%, 0.5%, 0.2%, and 0.1%) of acetic acid (AA), lactic acid (LA), and their mixtures (MX). The nematode bodies were disrupted severely and moderately by vacuolations in 0.5% of MX and single organic acids, respectively, suggesting toxicity of MX may be higher than AA and LA. The mortality of J2 was 100% at all concentrations of AA and MX and only at 1.0% and 0.5% of LA, which lowered slightly at 0.2% and greatly at 0.1% of LA. This suggests the nematicidal activity of MX may be mostly derived from AA together with supplementary LA toxicity. MX was applied to chili pepper plants inoculated with about 1,000 J2, for which root-knot gall formations and plant growths were examined 4 weeks after inoculation. The root gall formation was completely inhibited by 0.5% MX and standard and double concentrations of fosthiazate; and inhibited 92.9% and 57.1% by 0.2% and 0.1% MX, respectively. Shoot height, shoot weight, and root weight were not significantly ($P{\leq}0.05$) different among all treatments and the untreated and non-inoculated controls. All of these results suggest that the mixture of the organic acids may have a potential to be developed as an eco-friendly nematode control agent that needs to be supported by the more nematode control experiments in fields.

Temperature Effects on Korean Entomopathogenic Nematodes, Steinernema glaseri and S. longicaudum, and their Symbiotic Bacteria

  • Hang Dao Thi;Choo, Ho-Yul;Lee, Dong-Woon;Lee, Sang-Myeong;Kaya Harry K.;Park, Chung-Gyoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.420-427
    • /
    • 2007
  • We investigated the temperature effects on the virulence, development, reproduction, and otility of two Korean isolates of entomopathogenic nematodes, Steinernema glaseri Dongrae strain and S. longicaudum Nonsan strain. In addition, we studied the growth and virulence of their respective symbiotic bacterium, Xenorhabdus poinarii for S. glaseri and Xenorhabdus sp. for S. longicaudum, in an insect host at different temperatures. Insects infected with the nematode-bacterium complex or the symbiotic bacterium was placed at $13^{\circ}C,\;18^{\circ}C,\;24^{\circ}C,\;30^{\circ}C,\;or\;35^{\circ}C$ in the dark and the various parameters were monitored. Both nematode species caused mortality at all temperatures tested, with higher mortalities occurring at temperatures between $24^{\circ}C\;and\;30^{\circ}C$. However, S. longicaudum was better adapted to cold temperatures and caused higher mortality at $18^{\circ}C$ than S. glaseri. Both nematode species developed to adult at all temperatures, but no progeny production occurred at $13^{\circ}C\;or\;35^{\circ}C$. For S. glaseri, nematode progeny production was best at inocula levels above 20 infective juveniles/host at $24^{\circ}C\;and\;30^{\circ}C$, but for S. longicaudum, progeny production was generally better at $24^{\circ}C$. Steinernema glaseri showed the greatest motility at $30^{\circ}C$, whereas S. longicaudum showed good motility at $24^{\circ}C\;and\;30^{\circ}C$. Both bacterial species grew at all tested temperatures, but Xenorhabdus sp. was more virulent at low temperatures $(13^{\circ}C\;and\;18^{\circ}C)$ than X. poinarii.