Browse > Article

Temperature Effects on Korean Entomopathogenic Nematodes, Steinernema glaseri and S. longicaudum, and their Symbiotic Bacteria  

Hang Dao Thi (Division of Applied Life Science, Gyeongsang National University)
Choo, Ho-Yul (Department of Applied Biology and Environmental Sciences, Environmental Biotechnology National Core Research Center, Institute of Agriculture & Life Sciences, Gyeongsang National University)
Lee, Dong-Woon (Department of Applied Biology, Sangju National University)
Lee, Sang-Myeong (Southern Forest Research Center, Korea Forest Research Institute)
Kaya Harry K. (Department of Nematology, University of California)
Park, Chung-Gyoo (Department of Applied Biology and Environmental Sciences, Environmental Biotechnology National Core Research Center, Institute of Agriculture & Life Sciences, Gyeongsang National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.3, 2007 , pp. 420-427 More about this Journal
Abstract
We investigated the temperature effects on the virulence, development, reproduction, and otility of two Korean isolates of entomopathogenic nematodes, Steinernema glaseri Dongrae strain and S. longicaudum Nonsan strain. In addition, we studied the growth and virulence of their respective symbiotic bacterium, Xenorhabdus poinarii for S. glaseri and Xenorhabdus sp. for S. longicaudum, in an insect host at different temperatures. Insects infected with the nematode-bacterium complex or the symbiotic bacterium was placed at $13^{\circ}C,\;18^{\circ}C,\;24^{\circ}C,\;30^{\circ}C,\;or\;35^{\circ}C$ in the dark and the various parameters were monitored. Both nematode species caused mortality at all temperatures tested, with higher mortalities occurring at temperatures between $24^{\circ}C\;and\;30^{\circ}C$. However, S. longicaudum was better adapted to cold temperatures and caused higher mortality at $18^{\circ}C$ than S. glaseri. Both nematode species developed to adult at all temperatures, but no progeny production occurred at $13^{\circ}C\;or\;35^{\circ}C$. For S. glaseri, nematode progeny production was best at inocula levels above 20 infective juveniles/host at $24^{\circ}C\;and\;30^{\circ}C$, but for S. longicaudum, progeny production was generally better at $24^{\circ}C$. Steinernema glaseri showed the greatest motility at $30^{\circ}C$, whereas S. longicaudum showed good motility at $24^{\circ}C\;and\;30^{\circ}C$. Both bacterial species grew at all tested temperatures, but Xenorhabdus sp. was more virulent at low temperatures $(13^{\circ}C\;and\;18^{\circ}C)$ than X. poinarii.
Keywords
Steinernema; mutualistic bacterium; Xenorhabdus; entomopathogenic nematode;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Demir, I. and Z. Demirbag. 2006. A productive replication of Hyphantria cunea nucleopolyhedrovirus in Lymantria dispar cell line. J. Microbiol. Biotechnol. 16: 1485-1490   과학기술학회마을
2 Kaya, H. K. 1977. Development of the DD-136 strain of Neoaplectana carpocapsae at constant temperature. J. Nematol. 9: 346-349
3 Kaya, H. K. 1990. Soil ecology, pp. 93-115. In Gaugler, R. and H. K. Kaya (eds.), Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, FL, U.S.A
4 Brown, I. M. and R. Gaugler. 1997. Temperature and humidity influence and survival of entomopathogenic nematodes. Nematologica 43: 363-375   DOI   ScienceOn
5 Saunders, J. E. and J. M. Webster. 1999. Temperature effects on Heterorhabditis megidis and Steinernema carpocapsae infectivity to Galleria mellonella. J. Nematol. 31: 299-304
6 Kaya, H. K. and S. P. Stock. 1997. Techniques in insect nematology, pp. 281-324. In Lacey, L. A. (ed.), Manual of Techniques in Insect Pathology. Academic Press, San Diego, CA, U.S.A
7 Wouts, W. M., Z. Mracek, S. Gerdin, and R. A. Bedding. 1982. Neoaplectana Steiner, 1929; a junior synonym of Steinernema Travassos, 1927 (Nematoda; Rhabditida). Syst. Parasitol. 4: 147-154   DOI
8 Dutky, S. R., J. V. Thompson, and G. E. Cantwell. 1964. A technique for the mass propagation of the DD-136 nematode. J. Insect Pathol. 6: 417-422
9 Milstead, J. E. 1981. Influence of temperature and dosage on mortality of seventh instar lavae of Galleria mellonella (Insecta: Lepidoptera) caused by Heterorhabditis bacteriphora (Nematoda: Rhabditoidea) and its bacterial associate Xenorhabdus luminescens. Nematologica 27: 167-171   DOI
10 Molyneux, A. S. 1986. Heterorhabditis spp. and Steinernema (=Neoaplectana) spp.: Temperature, and aspects of behaviour and infectivity. Exper. Parasitol. 62: 169-180   DOI   ScienceOn
11 Boemare, N. E. 2002. Interactions between the parters of the entomopathogenic bacterium nematode complex, Steinernema-Xenorhabdus and Heterorhabditis-Photorhabdus. Nematology 4: 601-603   DOI   ScienceOn
12 Chung, S.-H. and S.-D. Kim. 2005. Biological control of phytopathogenic fungi by Bacillus amyloliquefaciens 7079; suppression rates are better than popular chemical fungicides. J. Microbiol. Biotechnol. 15: 1011-1021   과학기술학회마을
13 Stock, S. P., J. Heng, D. J. Hunt, A. P. Reid, X. Shen, and H. Y. Choo. 2001. Redescription of Steinernema longicaudum Shen & Wang (Nematoda: Steinernenatidae); geographic distribution and phenotypic variation between allopatric populations. J. Helminthol. 75: 81-92   DOI
14 Choo, H. Y., H. K. Kaya, and S. P. Stock. 1995. Isolation of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from Korea. Jap. J. Nematol. 25: 44-51   DOI
15 Hatab, M. A. and R. Gaugler. 1997. Growth-mediated variations in fatty acids of Xenorhabdus sp. J. Appl. Microbiol. 82: 351-358   DOI   ScienceOn
16 Akurst, R. J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309
17 Grewal, P. S., S. Selvan, and R. Gaugler. 1994. Thermal adaptation of entomopathogenic nematodes: Niche breadth for infection, establishment, and reproduction. J. Thermal Biol. 19: 245-253   DOI   ScienceOn
18 Koppenhofer, A. M. and H. K. Kaya. 1999. Ecological characterization of Steinernema rarum. J. Invertebr. Pathol. 73: 120-128   DOI   ScienceOn
19 Woodring, J. L. and H. K. Kaya. 1988. Steinernematid and Heterorhabditid Nematodes: A Handbook of Techniques. Southern Coop. Ser. Bull. 331. Arkansas Agriculture Experimental Station, Fayetteville, AR
20 Lee, B. S., H. B. Lee, S. W. Choi, H. S. Yun, and E. K. Kim. 2005. Effective screening of antagonist for the biological control of soilborne infectious disease (Damping-off). J. Microbiol. Biotechnol. 15: 701-709   과학기술학회마을
21 Kim, J. S., J. Y. Choi, J. H. Chang, H. J. Shim, J. Y. Roh, B. R. Jin, and Y. H. Je. 2005. Characterization of an improved recombinant baculovirus producing polyhedra that contain Bacillus thuringiensis Cry1Ac crystal protein. J. Microbiol. Biotechnol. 15: 710-715   과학기술학회마을
22 SAS Institute. 1996. 'SAS 6.11 for Windows,' SAS Institute. Cary, NC, U.S.A
23 Choo, H. Y., H. K. Kaya, S. M. Lee, H. H. Kim, and D. W. Lee. 1998. Biocontrol research with nematodes against insect pest in Korea. Jap. J. Nematol. 28: 29-41   DOI
24 Hazir, S., S. P. Stock, H. K. Kaya, A. M. Koppenhopper, and N. Keskin. 2001. Development temperature effect on five geographic isolates of the entomopathogenic nematode Steinernema feltiae (Nematoda: Steinernematidae). J. Invertebr. Pathol. 77: 245-250
25 Koppenhofer, A. M. and E. M. Fuzy. 2003. Ecological characterization of Steinernema scarabaei, a scarab-adapted entomopathogenic nematode from New Jersey. J. Invertebr. Pathol. 83: 139-148   DOI   ScienceOn
26 Henneberry, T. J., L. F. Jech, R. A. Burke, and J. E. Lindegren. 1996. Temperature effects on infection and mortality of Pectinophora gossypiella (Lepidoptera: Gelechiidae) larvae by two entomopathogenic nematode species. Environ. Entomol. 25: 179-183   DOI
27 Kaya, H. K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 182-206
28 Koppenhofer, A. M., S. Ganguly, and H. K. Kaya. 2000. Ecological characterization of Steinernema monticolum, a cold-adapted entomopathogenic nematode from Korea. Nematology 2: 407-416   DOI   ScienceOn
29 Boemare, N. E. 2002. Biology, taxonomy, and systematics of Photorhabdus and Xenorhabdus, pp. 35-56. In Gaugler, R. (ed.), Entomopathogenic Nematology. CABI Publishing, Wallingford, Oxon, U.K
30 Webster, J. M., G. Chen, K. Hu, and J. Li. 2002. Bacterial metabolites, pp. 99-114. In Gaugler, R. (ed.), Entomopathogenic Nematology. CABI Publishing, Wallingford, Oxon, U.K