Browse > Article
http://dx.doi.org/10.7745/KJSSF.2016.49.4.401

Identification of 2-methylbutyric Acid as a Nematicidal Metabolite, and Biocontrol and Biofertilization Potentials of Bacillus pumilus L1  

Lee, Yong-Seong (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Cho, Jeong-Yong (Department of Food Engineering, Mokpo National University)
Moon, Jae-Hak (Department of Food Science and Technology, and Functional Food Research Center, Chonnam National University)
Kim, Kil-Yong (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.49, no.4, 2016 , pp. 401-408 More about this Journal
Abstract
The present study described the isolation of 2-methylbutyric acid (2-MBA) produced from Bacillus pumilus L1, to subsequently investigate its nematicidal activity for the control of the root-knot nematode. The results showed that 2-MBA could be purified by chromatographic techniques and was identified using nuclear magnetic resonance and liquid chromatography-mass spectrometry. Crude extract and partially purified compounds had a significant effect on the inhibition of egg hatchability and second-stage juvenile (J2) mortality. A dose-dependent effect of 2-MBA was observed for J2 mortality and egg hatchability. Egg hatchability was 69.2%, 59.9%, 32.7%, and 0.0% at 125, 250, 500, and $1000{\mu}g\;mL^{-1}$ of 2-MBA after 4 d of incubation, respectively. Meanwhile, J2 mortality was in the range of 24.4%-100.0% after 2 d of incubation, depending on the concentrations of 2-MBA used. A pot experiment also demonstrated that treatment of B. pumilus L1 culture caused a significant reduction in the number of galls, egg masses, and J2 population than that of the tap water (TW) control. However, as the B. pumilus L1 culture concentration was decreased, the efficacy of nematode control by treatment of B. pumilus L1 culture was reduced compared to that of TW. B. pumilus L1 inoculation at different concentrations also promoted cucumber plant growth. Therefore, our study demonstrated the potential of 2-MBA from B. pumilus L1 as a biocontrol agent against the root-knot nematode and a plant growth promoter for cucumber plants.
Keywords
Bacillus pumilus L1; Biocontrol; Root-knot nematode; Plant growth; 2-methylbutyric acid;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Mekete, T., J. Hallmann, S. Kiewnick, and R. Sikora. 2009. Endophytic bacteria from Ethiopian coffee plants and their potential to antagonise Meloidogyne incognita. Nematology 11:117-127.   DOI
2 Meyer, S.L.F., J.M. Halbrendt, L.K. Carta, A.M. Skantar, T. Liu, H.M.E. Abdelnabby, and B.T. Vinyard. 2009. Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes. J. Nematol. 41:274-280.
3 Moghaddam, M.R., E.M. Moghaddam, S.B. Ravari, and H. Rouhani. 2014. The first report of Bacillus pumilus influence against Meloidogyne javanica in Iran. J. Crop Prot. 3:105-112.
4 Nguyen, X.H., K.W. Naing, Y.S. Lee, W.J. Jung, M. Anees, and K.Y. Kim. 2013. Antagonistic potential of Paenibacillus elgii HOA73 against the root-knot nematode, Meloidogyne incognita. Nematology 15:991-1000.   DOI
5 Nicol, J.M., S.J. Turner, D.L. Coyne, L. den Nijs, S. Hockland, and M.Z. Tahna. 2011. Current nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C. (eds) Genomics and Molecular Genetics of Plant-Nematode Interactions. Heidelberg, Germany, Springer, pp. 21-43.
6 Oliveira, D.F., H.W.P. Carvalho, A.S. Nunes, G.H. Silva, V.P. Campos, H.M.S. Junior, and A.J. Cavalheiro. 2009. The activity of amino acids produced by Paenibacillus macerans and from commercial sources against the root-knot nematode Meloidogyne exigua. Eur. J. Plant Pathol. 124:57-63.   DOI
7 Oliveira, D.F., V.P. Campos, D.R. Amaral, A.S. Nunes, J.A. Pantaleao, and D.A. Costa. 2007. Selection of rhizobacteria able to produce metabolites active against Meloidogyne exigua. Eur. J. Plant Pathol. 119:477-479.   DOI
8 Padgham, J.L. and R.A. Sikora. 2006. Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicolaon rice. Crop Protect. 26:971-977.
9 Tian, B., J. Yang, and K.Q. Zhang. 2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms, olfaction, and future prospects. FEMS Microbiol. Ecol. 61:197-213.   DOI
10 Yoon, G.Y., Y.S. Lee, S.Y. Lee, R.D. Park, H.N. Hyun, Y. Nam, and K.Y. Kim. 2012. Effects on Meloidogyne incognita of chitinase, glucanase and a secondary metabolite from Streptomyces cacaoi GY525. Nematology 14:175-184.   DOI
11 Akbulut, N., M.T. Ozturka, T. Pijning, S. Ozturka, and F. Gumusel. 2013. Improved activity and thermostability of Bacillus pumilus lipase by directed evolution. J. Biotechnol. 164:123-129.   DOI
12 Abdel-Rahman, F.H., S. Clark, and M.A. Saleh. 2008. Natural organic compounds as alternative to methyl bromide for nematodes control. J. Environ. Sci. Health B. 43:680-685.   DOI
13 Adekunle, O.K. and A. Akinlua. 2007. Nematicidal effects of Leucaena leucocephala and Gliricidia sepium extracts on Meloidogyne incognita infecting okra. J. Agric. Sci. 52:53-63.
14 Ahmadian, G., G. Degrassi, V. Venturi, D.R. Zeigler, M. Soudi, and P. Zanguinejad. 2007. Bacillus pumilus SG2 isolated from saline conditions produces and secretes two chitinases. J. Appl. Microbiol.103:1081-1089.   DOI
15 Browning, M., C. Dawson, S.R. Alm, J.H. Gorres, and J.A. Amador. 2004. Differential effects of butyric acid on nematodes from four trophic groups. Appl. Soil Ecol. 27:47-54.   DOI
16 Akhtar, M.S. and Z.A. Siddiqui. 2008. Glomus intraradices, Pseudomonas alcaligenes, and Bacillus pumilus: effective agents for the control of root-rot disease complex of chickpea (Cicer arietinum L.). J. Gen. Plant Pathol. 74:53-60.   DOI
17 Asante, G.S. and A.L. Neal. 1964. Characterization of fungistatic substances produced by a Bacillus antagonistic to Ceratocystis ulmi. Phytophathol. 54:819-822.
18 Blackburn, K., S.R. Alm, and T.S. Yeh. 1996. Avermectin B1, isazofos, and fenamiphos for control of Hoplolaimus galeatus and Tylenchorhynchus dubius infesting Poa annua. J. Nematol. 28:687-694.
19 Elbadri, G.A., D.W. Lee, J.C. Park, H.B. Yu, and H.Y. Choo. 2008. Evaluation of various plant extracts for their nematicidal efficacies against juveniles of Meloidogyne incognita. J. Asia Pacific Entomol. 11:99-102.   DOI
20 Gautam, A., Z.A. Siddiqui, and I. Mahmood. 1995. Integrated management of Meloidogyne incognita on tomato. Nematol. Mediterr. 23:245-247.
21 Gierth, K., J. Hallmann, J. Schlang, J. Müller, and R.A. Sikora. 2004. Plant tolerance for managing plant parasitic nematodes. IOBC-WPRS Bulletin 27:67-73.
22 Hayashida-Soiza, G., A. Uchida, N. Mori, Y. Kuwahara, and Y. Ishida. 2008. Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strain. J. Appl. Microbiol. 105:1672-1677.   DOI
23 Huang, Y., C.K. Xu, L. Ma, K.Q. Zhang, C.Q. Duan, and M.H. Mo. 2010. Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. Eur. J. Plant Pathol. 26:417-422.   DOI
24 Kokalis-Burelle, N., J.W. Kloepper, and M.S. Reddy. 2006. Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl. Soil Ecol. 31:91-100.   DOI
25 Hussey, R.S. and K.R. Barker. 1973. A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Dis. Rep. 57:1025-1028.
26 Insunza, V., S. Alström, and B. Eriksson. 2000. Root-associated bacteria from nematicidal plants and their suppressive effects on trichodorid nematodes in potato. Proceedings of the Fifth International PGPR Workshop, Cordoba, Argentina.
27 Khan, Z., S.G. Kim, Y.H. Jeon, H.U. Khan, S.H. Son, and Y.H. Kim. 2008. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresour. Technol. 99:3016-3023.   DOI
28 Lee, H.J., K.H. Park, J.H. Shim, R.D. Park, Y.W. Kim, H. Hwang-Bo, J.Y. Cho, Y.C. Kim, and K.Y. Kim. 2005. Isolation and identification of low molecular weight compounds produced by Bacillus subtilis HJ927 and their biocontrol effect on the late blight of pepper (Capsicum annuum L.). Korean. J. Soil Sci. Fert. 38(1):25-31.
29 Lee, Y.S. and K.Y. Kim, 2016 Antagonistic potential of Bacillus pumilus L1 against root-knot nematode, Meloidogyne arenaria. J. Phytopathol. 164 :29-39.   DOI
30 Lee, Y.S., M. Anees, H.N. Hyun, and K.Y. Kim. 2013. Biocontrol potential of Lysobacter antibioticus HS124 against the root-knot nematode, Meloidogyne incognita, causing disease in tomato. Nematology 15:545-555.   DOI
31 Mayer, A., H. Anke, and O. Stemer. 1997. Omphalotin, a new cycle peptide with potent nematicidal activity from Omphalotus olearius. I. Fermentation and biological activity. Nat. Prod. Lett. 10:25-32.   DOI
32 Ruanpanun, P., H. Laatsch, N. Tangchitsomkid, and S. Lumyong. 2011. Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita. World J. Microbiol. Biotechnol. 27:1373-1380   DOI
33 Pandey, R., A. Kalra, S. Tandon, N. Mehrotra, H.N. Singh, and S. Kumar. 2000. Essential oils as potent sources of nematicidal compounds. J. Phytopathol. 148:501-502.   DOI
34 Pinho, R.S.C., V.P. Campos, R. Magela de Souza, J.R.C. Silva, M.S. Oliveira, G.C.S. Pimentel, and L.S.A.S. Costa. 2009. Effect of endophytic bacteria on the control of Meloidogyne incognita and their capacity of root colonization of tomato. Nematol. Bras. 33:54-60.
35 Reynolds, A.M., T.K. Dutta, R.H.C. Curtis, S.J. Powers, H.S. Gaur, and B.R. Kerry. 2011. Chemotaxis can take plantparasitic nematodes to the source of a chemo-attractant via the shortest possible routes. J. R. Soc. Interface 8:568-577.   DOI
36 Siddiqui, I.A., S.S. haukat, I.H. Sheikh, and A. Khan. 2006. Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J. Microbiol. Biotechnol. 22: 641-650.   DOI
37 Siddiqui, Z.A., A. Iqbal, and I. Mahmood. 2011. Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato. Appl. Soil Ecol. 16:179-185.
38 Siddiqui, Z.A. and I. Mahmood. 1999. Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour. Technol. 69:167-179.   DOI
39 Southey, J.F. 1986. Laboratory methods for work with plant and soil nematodes. London, UK, Ministry of Agriculture Fisheries and Food, Her Majesty's Stationery Office.