Temperature Effects on Korean Entomopathogenic Nematodes, Steinernema glaseri and S. longicaudum, and their Symbiotic Bacteria

  • Hang Dao Thi (Division of Applied Life Science, Gyeongsang National University) ;
  • Choo, Ho-Yul (Department of Applied Biology and Environmental Sciences, Environmental Biotechnology National Core Research Center, Institute of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Lee, Dong-Woon (Department of Applied Biology, Sangju National University) ;
  • Lee, Sang-Myeong (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Kaya Harry K. (Department of Nematology, University of California) ;
  • Park, Chung-Gyoo (Department of Applied Biology and Environmental Sciences, Environmental Biotechnology National Core Research Center, Institute of Agriculture & Life Sciences, Gyeongsang National University)
  • Published : 2007.03.31

Abstract

We investigated the temperature effects on the virulence, development, reproduction, and otility of two Korean isolates of entomopathogenic nematodes, Steinernema glaseri Dongrae strain and S. longicaudum Nonsan strain. In addition, we studied the growth and virulence of their respective symbiotic bacterium, Xenorhabdus poinarii for S. glaseri and Xenorhabdus sp. for S. longicaudum, in an insect host at different temperatures. Insects infected with the nematode-bacterium complex or the symbiotic bacterium was placed at $13^{\circ}C,\;18^{\circ}C,\;24^{\circ}C,\;30^{\circ}C,\;or\;35^{\circ}C$ in the dark and the various parameters were monitored. Both nematode species caused mortality at all temperatures tested, with higher mortalities occurring at temperatures between $24^{\circ}C\;and\;30^{\circ}C$. However, S. longicaudum was better adapted to cold temperatures and caused higher mortality at $18^{\circ}C$ than S. glaseri. Both nematode species developed to adult at all temperatures, but no progeny production occurred at $13^{\circ}C\;or\;35^{\circ}C$. For S. glaseri, nematode progeny production was best at inocula levels above 20 infective juveniles/host at $24^{\circ}C\;and\;30^{\circ}C$, but for S. longicaudum, progeny production was generally better at $24^{\circ}C$. Steinernema glaseri showed the greatest motility at $30^{\circ}C$, whereas S. longicaudum showed good motility at $24^{\circ}C\;and\;30^{\circ}C$. Both bacterial species grew at all tested temperatures, but Xenorhabdus sp. was more virulent at low temperatures $(13^{\circ}C\;and\;18^{\circ}C)$ than X. poinarii.

Keywords

References

  1. Akurst, R. J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309
  2. Boemare, N. E. 2002. Biology, taxonomy, and systematics of Photorhabdus and Xenorhabdus, pp. 35-56. In Gaugler, R. (ed.), Entomopathogenic Nematology. CABI Publishing, Wallingford, Oxon, U.K
  3. Boemare, N. E. 2002. Interactions between the parters of the entomopathogenic bacterium nematode complex, Steinernema-Xenorhabdus and Heterorhabditis-Photorhabdus. Nematology 4: 601-603 https://doi.org/10.1163/15685410260438863
  4. Brown, I. M. and R. Gaugler. 1997. Temperature and humidity influence and survival of entomopathogenic nematodes. Nematologica 43: 363-375 https://doi.org/10.1163/005025997X00102
  5. Choo, H. Y., H. K. Kaya, and S. P. Stock. 1995. Isolation of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from Korea. Jap. J. Nematol. 25: 44-51 https://doi.org/10.3725/jjn1993.25.1_44
  6. Choo, H. Y., H. K. Kaya, S. M. Lee, H. H. Kim, and D. W. Lee. 1998. Biocontrol research with nematodes against insect pest in Korea. Jap. J. Nematol. 28: 29-41 https://doi.org/10.3725/jjn1993.28.supplement_29
  7. Chung, S.-H. and S.-D. Kim. 2005. Biological control of phytopathogenic fungi by Bacillus amyloliquefaciens 7079; suppression rates are better than popular chemical fungicides. J. Microbiol. Biotechnol. 15: 1011-1021
  8. Demir, I. and Z. Demirbag. 2006. A productive replication of Hyphantria cunea nucleopolyhedrovirus in Lymantria dispar cell line. J. Microbiol. Biotechnol. 16: 1485-1490
  9. Dutky, S. R., J. V. Thompson, and G. E. Cantwell. 1964. A technique for the mass propagation of the DD-136 nematode. J. Insect Pathol. 6: 417-422
  10. Grewal, P. S., S. Selvan, and R. Gaugler. 1994. Thermal adaptation of entomopathogenic nematodes: Niche breadth for infection, establishment, and reproduction. J. Thermal Biol. 19: 245-253 https://doi.org/10.1016/0306-4565(94)90047-7
  11. Hatab, M. A. and R. Gaugler. 1997. Growth-mediated variations in fatty acids of Xenorhabdus sp. J. Appl. Microbiol. 82: 351-358 https://doi.org/10.1046/j.1365-2672.1997.00369.x
  12. Hazir, S., S. P. Stock, H. K. Kaya, A. M. Koppenhopper, and N. Keskin. 2001. Development temperature effect on five geographic isolates of the entomopathogenic nematode Steinernema feltiae (Nematoda: Steinernematidae). J. Invertebr. Pathol. 77: 245-250
  13. Henneberry, T. J., L. F. Jech, R. A. Burke, and J. E. Lindegren. 1996. Temperature effects on infection and mortality of Pectinophora gossypiella (Lepidoptera: Gelechiidae) larvae by two entomopathogenic nematode species. Environ. Entomol. 25: 179-183 https://doi.org/10.1093/ee/25.1.179
  14. Kaya, H. K. 1977. Development of the DD-136 strain of Neoaplectana carpocapsae at constant temperature. J. Nematol. 9: 346-349
  15. Kaya, H. K. 1990. Soil ecology, pp. 93-115. In Gaugler, R. and H. K. Kaya (eds.), Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, FL, U.S.A
  16. Kaya, H. K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 182-206
  17. Kaya, H. K. and S. P. Stock. 1997. Techniques in insect nematology, pp. 281-324. In Lacey, L. A. (ed.), Manual of Techniques in Insect Pathology. Academic Press, San Diego, CA, U.S.A
  18. Kim, J. S., J. Y. Choi, J. H. Chang, H. J. Shim, J. Y. Roh, B. R. Jin, and Y. H. Je. 2005. Characterization of an improved recombinant baculovirus producing polyhedra that contain Bacillus thuringiensis Cry1Ac crystal protein. J. Microbiol. Biotechnol. 15: 710-715
  19. Koppenhofer, A. M. and E. M. Fuzy. 2003. Ecological characterization of Steinernema scarabaei, a scarab-adapted entomopathogenic nematode from New Jersey. J. Invertebr. Pathol. 83: 139-148 https://doi.org/10.1016/S0022-2011(03)00056-9
  20. Koppenhofer, A. M. and H. K. Kaya. 1999. Ecological characterization of Steinernema rarum. J. Invertebr. Pathol. 73: 120-128 https://doi.org/10.1006/jipa.1998.4822
  21. Koppenhofer, A. M., S. Ganguly, and H. K. Kaya. 2000. Ecological characterization of Steinernema monticolum, a cold-adapted entomopathogenic nematode from Korea. Nematology 2: 407-416 https://doi.org/10.1163/156854100509268
  22. Lee, B. S., H. B. Lee, S. W. Choi, H. S. Yun, and E. K. Kim. 2005. Effective screening of antagonist for the biological control of soilborne infectious disease (Damping-off). J. Microbiol. Biotechnol. 15: 701-709
  23. Milstead, J. E. 1981. Influence of temperature and dosage on mortality of seventh instar lavae of Galleria mellonella (Insecta: Lepidoptera) caused by Heterorhabditis bacteriphora (Nematoda: Rhabditoidea) and its bacterial associate Xenorhabdus luminescens. Nematologica 27: 167-171 https://doi.org/10.1163/187529281X00223
  24. Molyneux, A. S. 1986. Heterorhabditis spp. and Steinernema (=Neoaplectana) spp.: Temperature, and aspects of behaviour and infectivity. Exper. Parasitol. 62: 169-180 https://doi.org/10.1016/0014-4894(86)90021-4
  25. SAS Institute. 1996. 'SAS 6.11 for Windows,' SAS Institute. Cary, NC, U.S.A
  26. Saunders, J. E. and J. M. Webster. 1999. Temperature effects on Heterorhabditis megidis and Steinernema carpocapsae infectivity to Galleria mellonella. J. Nematol. 31: 299-304
  27. Stock, S. P., J. Heng, D. J. Hunt, A. P. Reid, X. Shen, and H. Y. Choo. 2001. Redescription of Steinernema longicaudum Shen & Wang (Nematoda: Steinernenatidae); geographic distribution and phenotypic variation between allopatric populations. J. Helminthol. 75: 81-92 https://doi.org/10.1079/JOH200036
  28. Webster, J. M., G. Chen, K. Hu, and J. Li. 2002. Bacterial metabolites, pp. 99-114. In Gaugler, R. (ed.), Entomopathogenic Nematology. CABI Publishing, Wallingford, Oxon, U.K
  29. Woodring, J. L. and H. K. Kaya. 1988. Steinernematid and Heterorhabditid Nematodes: A Handbook of Techniques. Southern Coop. Ser. Bull. 331. Arkansas Agriculture Experimental Station, Fayetteville, AR
  30. Wouts, W. M., Z. Mracek, S. Gerdin, and R. A. Bedding. 1982. Neoaplectana Steiner, 1929; a junior synonym of Steinernema Travassos, 1927 (Nematoda; Rhabditida). Syst. Parasitol. 4: 147-154 https://doi.org/10.1007/BF00018998