• Title/Summary/Keyword: nematicide

Search Result 42, Processing Time 0.029 seconds

Comparison of the Inhibitory Effects of Nematicides on Nematode Populations in a Regional Vinyl Plastic House (지역별 시설재배지에서 식물기생선충의 살선충제에 대한 밀도억제 효과 비교)

  • Kim, Sae-Hee;Park, Sang-Eun;Ko, Na-Yeon;Ryu, Tae-Hee;Shin, Heo-Seob;Kwon, Hye-Ri;Seo, Mi-Ja;Yu, Yong-Man;Youn, Young-Nam
    • Korean journal of applied entomology
    • /
    • v.52 no.3
    • /
    • pp.215-225
    • /
    • 2013
  • To assess the efficacy of nematicides for the control of plant-parasitic nematodes in fruit and vegetables fields, soil samples were collected from a cucumber field at Gongju; from strawberry fields at Buyeo, Nonsan, and Jinju; and from a melon field at Gocksung in Jeonnam Province, Korea. Plant-parasitic nematodes were separated from each soil sample and identified. The susceptibilities of the nematodes to abamectin 1.68% SC, cadusafos 3% GR, dazomet 98% GR, fosthiazate 30% SL and BA12011 SL were examined under laboratory and field conditions. The average population density of plant-parasitic nematodes was generally reduced after the treatment with nematicides; however, there was increase in the population of Pratylenchus spp. in soil after treatment with fosthiazate at Buyeo and Gocksung. Furthermore, there were increased populations following treatment with abamectin, cadusafos, and dazomet at Gocksung. The control effects of BA12011 treatment on plant-parasitic nematodes were confirmed to be similar to those of the other 4 nematicides evaluated, although its control effect was higher than that of fosthiazate in cucumber-growing soil at Gongju. The effects of nematicide treatment on egg mass formation in each of the collected soils differed according to the region of soil origin. Abamectin was effective in reducing the degree of egg mass formation in Buyeo and Jinju soil, whereas BA12011 was effective in Nonsan and Gocksung soil. Dazomet was found to inhibit egg mass formation in Gongju soil. To evaluate the effect of the newly developed nematicide, BA12011, experiments were conducted in a cucumber-growing greenhouse. The average population densities of Meloidogyne spp., Pratylenchus spp., and Helicotylenchus spp. after the first treatment were reduced to a greater extent than after the second treatment. It is thus suggested that early nematicide treatment is important for effective control of plant-parasitic nematodes.

Development and validation of an analytical method for nematicide imicyafos determination in agricultural products by HPLC-UVD (HPLC-UVD를 이용한 살선충제 imicyafos의 시험법 개발 및 검증)

  • Do, Jung-Ah;Park, Hyejin;Kwon, Ji-Eun;Choi, Won-Jo;Lee, Hyun-Sook;Chang, Moon-Ik;Hong, Jin-Hwan;Oh, Jae-Ho
    • Analytical Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.234-242
    • /
    • 2014
  • Imicyafos which is a nematicide for controlling root-knot nematodes has been registered in the Republic of Korea in 2012, and the maximum residue limits of imicyafos are set to watermelon and korean melon as each 0.05 mg/kg. Extremely reliable and sensitive analytical method is required for ensuring food safety on imicyafos residues in agricultural commodities. Imicyafos residues in samples were extracted with acetone, partitioned with hexane and dichloromethane, and then purified with florisil. The purified samples were analyzed by HPLC-UVD and confirmed with LC-MS. Linear range was between 0.1~5 mg/kg with the correlation coefficient ($r^2$) 0.99997. Average recoveries of imicyafos ranged from 77.0 to 115.4% at the spiked levels of 0.02 and 0.05 mg/kg with the relative standard deviations of 2.2~9.6%. Limit of detection and quantification were 0.005 and 0.02 mg/kg, respectively. An inter-laboratory study was conducted to validate the determination method in depth, and the results were satisfactory. All of the validation results revealed that the developed analytical method in this study is relevant for imicyafos determination in agricultural commodities and will be used as an official analytical method.

Characterization of Streptomyces netropsis Showing a Nematicidal Activity against Meloidogyne incognita (Meloidogyne incognita에 살선충활성을 보이는 신규 Streptomyces netropsis의 살선충 특성 규명)

  • Jang, Ja Yeong;Choi, Yong Ho;Joo, Yoon-Jung;Kim, Hun;Choi, Gyung Ja;Jang, Kyoung Soo;Kim, Chang-Jin;Cha, Byeongjin;Park, Hae Woong;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.50-57
    • /
    • 2015
  • Control of nematode has become difficult owing to the restricted use of effective soil fumigant, methyl bromide, and other non-fumigant nematicides. Therefore, it is urgently necessary to develop microbial nematicide to replace chemical nematicides. In this study, the 50% aqueous methanol extraction solution of fermentation broths of 2,700 actinomycete strains were tested for their nematicidal activity against second stage of juveniles (J2s) of Meloidogyne incognita. As the results, only the 50% aqueous methanol extraction solution of AN110065, at 20% equivalent to 10% fermentation broth, showed strong nematicidal activity with 78.9% of mortality 24 h after treatment and 94.1% of mortality at 72 h. The 16S rRNA gene sequencing showed that the strain sequence was 99.78% identical to Streptomyces netropsis. The extract of S. netropsis AN110065 fermentation broth was successively partitioned with ethyl acetate and butanol and then the ethyl acetate, butanol and water layers were investigated for their nematicidal activity against the M. incognita. At $1000{\mu}g/ml$, ethyl acetate layer showed the strongest activity of 83.5% of juvenile mortality 72 h after treatment. The pot experiment using the fermentation broth of AN110065 on tomato plant against M. incognita displayed that it evidently suppressed gall formation at a 10-fold diluent treatment. The tomato plants treated with the fermentation broth of S. netropsis AN110065 did not show any phytotoxicity. The results suggest that S. netropsis AN110065 has a potential to serve as microbial nematicide in organic agriculture.

Chemical Compositions and Nematicidal Activities of Essential Oils on Meloidogyne hapla (Nematoda: Tylenchida) Under Laboratory Conditions (식물정유의 당근뿌리혹선충(Meloidogyne hapla)에 대한 살선충활성 및 방향성성분 분석)

  • Jeon, Ju-Hyun;Ko, Hyoung-Rai;Kim, Se-Jong;Lee, Jae-Kook
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.1
    • /
    • pp.30-34
    • /
    • 2016
  • To evaluate the efficacy of natural nematicides for the control of root-knot nematode in strawberry greenhouses, commercial essential oils were examined by 24-well culture plate bioassay for their nematicidal activities against second-stage juveniles and eggs of Meloidogyne hapla. Based on the mortality of M. hapla juveniles at a concentration of $125{\mu}g/mL$, the most active essential oil was Alpinia galanga (100%), followed by Carum carbi (22.3%), Eugenia caryophyllata (9.4%), Cinnamonum zeylanicum (7.2%), Mentha pulegium (2.4%), and Foeniculum vulgare (2.1%). Moreover, A. galanga significantly reduced hatching at 7, 14, and 21 days after treatment. The volatile constituents identified in the A. galangal oil were methyl cinnamate (87.4%), 1,8-cineole (4.4%), ${\beta}$-pinene (2.5%), ${\alpha}$-pinene (2.2%), and p-cymene (1.1%), as major constituents. Results of this study show that A. galangal essential oil and its major constituents may serve as an environmental friendly agent of a promising natural nematicide to control Meloidogyne spp.

Effect of Nematicide-dipping Methods for the Control of Aphelenchoides fragariae in Strawberry (살선충제 침지처리에 의한 딸기잎선충 방제)

  • Kim, Dong-Geun;Kang, Myeong-Won;Lee, Joong-Hwan
    • Korean journal of applied entomology
    • /
    • v.47 no.1
    • /
    • pp.101-105
    • /
    • 2008
  • Effects of different application of nematicides (fosthiazate 5% G, ethoprophos 5% G, and diazinon 34% EC) for the control of Aphelenchoides fragariae in strawberry were evaluated in a greenhouse experiments. Mother strawberry (Fragaria grandiflora) cv. Yeohong were dipped in solution of nematicides (fosthiazate or ethoprophos at 2.5 g a.i./liter in $20^{\circ}C\;or\;46^{\circ}C$) for 10 min. and planted in a greenhouse for dipping treatment. For the compare, mother strawberry were dipped in hot water for 10 min. without chemicals. For soil treatment, fosthiazate or ethoprophos at 3 kg a.i./ha were mixed into soil. For foliar spray, diazinon at 3.4 g a.i./liter was sprayed at foliage until runoff. At 40, 80, and 100 days after planting, runners were harvested from each treatment and the rate of nematode infestation and the number of nematodes per plant were examined. After 100 days of planting, mother strawberry plants dipped in fosthiazate solution (2.5 g a.i./liter, $20^{\circ}C$) for 10 min. produced more number of healthy runners and reduced % of infected runner as much as 90% and also had fewer nematodes per runner. Fosthiazate was more effective than ethoprophos. Foliar application of diazinon was reduced A. fragariae populations only in early season. Hot water treatment and nematicide soil treatment were less effective.

Effect of temperature and pH on the attachment of Pasteuria penetrans to Meloidogyne arenaria and the mass production (Pasteuria penetrans의 땅콩뿌리혹선층(Meloidogyne arenaria)에 대한 온도와 pH별 부착 및 증식효과)

  • Park, Dong-Sik;Zhu, Yong-Zhe;Cho, Myoung-Rae;Hur, Jang-Hyun;Lim, Chun-Keun
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.3
    • /
    • pp.268-273
    • /
    • 2005
  • The cultivating agroproducts are damaged by the Meloidogyne spp. which are gradually increasing in farm land soil. No effective control method for Meloidogyne spp., however, is available. Pasteuria penetrans which is one of the microorganisms in soil is used for biological control of Meloidogyne spp. although the method of mass production is limited. This study was conducted to investigate attachment and mass production effect of P. penetrans to M. arenaria under different temperatures (10, 30, 50 and $70^{\circ}C$) and pH values (4, 7 and 10). Attachment rates under these temperature and pH were more than 96% and 80%, respectively. In mass production rates, the number of P. penetrans attached on M. arenaria under different temperatures and pH were highly increased in root of tomato but not significantly different. Therefore, we concluded that P. penetrans can survive and attach on M. arenaria under various conditions. This method for mass production of P. penetrans can be provided to develop environmentally-friendly nematicide.

Suppression of Meloidogyne arenaria by different treatments of Pasteuria penetrans (Pasteuria penetrans의 처리방법에 따른 땅콩뿌리혹선충 (Meloidogyne arenaria) 방제효과)

  • Zhu, Yong-Zhe;Park, Dong-Sik;Cho, Myoung-Rae;Hur, Jang-Hyun;Lim, Chun-Keun
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.437-441
    • /
    • 2005
  • This study was investigated to compare the suppression of Meloidogyne arenaria by different treatments of Pasteuria penetrans which is known for biological control agent against Meloidogyne spp.. In order to select proper number of P. penetrans showing good suppression effect, P. penetrans were mixed with M, arenaria for attachment using three different concentration such as $3{\times}10^4$, $3{\times}10^5$ and $3{\times}10^6$ endospores/5 g medium, followed by treating them onto the roots of tomato. After 14 weeks incubation, P. penetrans at $3{\times}10^6$ endospores showed highest activity against the formation of gall caused by M, arenaria. At a dose of $3{\times}10^5$ endospores/5 g medium, P. penetrans was treated into soil either mixing with soil or spray onto soil surface for comparing of suppressive efficacy. When the antagonistic bacterium was treated by the former method, it suppressed more effectively Using P. penetrans at $3{\times}10^6$ endospores and mixing with soil method, suppression was compared among P. penetrans, $PASTORIA^{(R)}$(Japan) and $Fosthiazate^{(R)}$(Korea). P. penetrans was more potent than $PASTORIA^{(R)}$(Japan) and as similar as $Fosthiazate^{(R)}$(Korea). Therefore, these results suggested that P. penetrans can be used for controling of M. arenaria as biological control agent. Furthermore, thess results can be provided to develop environmentally-friendly nematicide.

Efficacy of Different Nematicidal Compounds on Hatching and Mortality of Heterodera schachtii Infective Juveniles

  • Kim, Jeongeun;Mwamula, Abraham Okki;Kabir, Faisal;Shin, Jin Hee;Choi, Young Hwa;Lee, Jae-Kook;Lee, DongWoon
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.293-299
    • /
    • 2016
  • Effect of nematicidal compounds on hatchability of sugar beet cyst nematode, Heterodera schachtii and its infective juveniles was investigated. The sugar beet cyst nematode was isolated from Chinese cabbage field in Samcheok in Korea. Acute toxicity of nematicidal compounds against infective juveniles was also tested to find the $LC_{50}$ by exposing juveniles to given dilutions of each compound. Hatchability and mortality of infective juveniles of H. schachtii were influenced by nematicidal compounds (Fluopyram 40% SC, imicyafos 30% SC, fosthiazate 30% SC, abamectine 1.68% SC, terthiophene, and Eclipta prostrata extract). Fluopyram and imicyafos yielded the lowest rates of hatching. Total hatched infective juveniles were significantly different among nematicidal compounds. Positive correlation in percentage reduction of hatching was observed in fluopyram. Furthermore, the highest mortality was also observed in the treatments of fluopyram and imicyafos ($LC_{50}$ of 0.0543 and 0.0178 ppm respectively). The study, therefore, demonstrated available alternative nematicidal compounds which could be used in the control of H. schachtii.

Morphometric Characterisation of Root-Knot Nematode Populations from Three Regions in Ghana

  • Nyaku, Seloame Tatu;Lutuf, Hanif;Cornelius, Eric
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.544-554
    • /
    • 2018
  • Tomato (Solanum lycopersicum) production in Ghana is limited by the root-knot nematode (Meloidogyne incognita, and yield losses over 70% have been experienced in farmer fields. Major management strategies of the root-knot nematode (RKN), such as rotation and nematicide application, and crop rotation are either little efficient and harmful to environments, with high control cost, respectively. Therefore, this study aims to examine morphometric variations of RKN populations in Ghana, using principal component analysis (PCA), of which the information can be utilized for the development of tomato cultivars resistant to RKN. Ninety (90) second-stage juveniles (J2) and 16 adult males of M. incognita were morphometrically characterized. Six and five morphometric variables were measured for adult males and second-stage juveniles (J2) respectively. Morphological measurements showed differences among the adult males and second-stage juveniles (J2). A plot of PC1 and PC2 for M. incognita male populations showed clustering into three main groups. Populations from Asuosu and Afrancho (Group I) were more closely related compared to populations from Tuobodom and Vea (Group II). There was however a single nematode from Afrancho (AF4) that fell into Group III. Biplots for male populations indicate, body length, DEGO, greatest body width, and gubernaculum length serving as variables distinguishing Group 1 and Group 2 populations. These same groupings from the PCA were reflected in the dendogram generated using Agglomerative Hierarchical Clustering (AHC). This study provides the first report on morphometric characterisation of M. incognita male and juvenile populations in Ghana showing significant morphological variation.

Root-Knot Nematode (Meloidogyne incognita) Control Using a Combination of Lactiplantibacillus plantarum WiKim0090 and Copper Sulfate

  • Kim, Seulbi;Kim, Ho Myeong;Seo, Hye Jeong;Yeon, Jehyeong;Park, Ae Ran;Yu, Nan Hee;Jeong, Seul-Gi;Chang, Ji Yoon;Kim, Jin-Cheol;Park, Hae Woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.960-966
    • /
    • 2022
  • Lactic acid bacteria (LAB) exert antagonistic activity against root-knot nematodes, mainly by producing organic acids via carbohydrate fermentation. However, they have not yet been used for root-knot nematode (Meloidogyne incognita) control owing to a lack of economic feasibility and effectiveness. In this study, we aimed to isolate organic acid-producing LAB from kimchi (Korean traditional fermented cabbage) and evaluated their nematicidal activity. Among the 234 strains isolated, those showing the highest nematicidal activity were selected and identified as Lactiplantibacillus plantarum WiKim0090. Nematicidal activity and egg hatch inhibitory activity of WiKim0090 culture filtrate were dose dependent. Nematode mortality 3 days after treatment with 2.5% of the culture filtrate was 100%, with a 50% lethal concentration of 1.41%. In pot tests, the inhibitory activity of an L. plantarum WiKim0090-copper sulfate mixture on gall formation increased. Compared to abamectin application, which is a commercial nematicide, a higher control value was observed using the WiKim0090-copper sulfate mixture, indicating that this combination can be effective in controlling the root-knot nematode.