Browse > Article
http://dx.doi.org/10.5423/RPD.2015.21.2.050

Characterization of Streptomyces netropsis Showing a Nematicidal Activity against Meloidogyne incognita  

Jang, Ja Yeong (Division of Food Technology, Biotechnology and Agrochemistry, Jeonnam National University)
Choi, Yong Ho (Eco-friendly New Materials Research Group, Korea Research Institute of Chemical Technology)
Joo, Yoon-Jung (Microbial Resource Center, Korea Research Institute Bioscience and Biotechnology)
Kim, Hun (Eco-friendly New Materials Research Group, Korea Research Institute of Chemical Technology)
Choi, Gyung Ja (Eco-friendly New Materials Research Group, Korea Research Institute of Chemical Technology)
Jang, Kyoung Soo (Eco-friendly New Materials Research Group, Korea Research Institute of Chemical Technology)
Kim, Chang-Jin (Microbial Resource Center, Korea Research Institute Bioscience and Biotechnology)
Cha, Byeongjin (Department of Plant Medicine, Chungbuk National University)
Park, Hae Woong (World Institute of Kimchi, an Annex of Korea Food Research Institute)
Kim, Jin-Cheol (Division of Food Technology, Biotechnology and Agrochemistry, Jeonnam National University)
Publication Information
Research in Plant Disease / v.21, no.2, 2015 , pp. 50-57 More about this Journal
Abstract
Control of nematode has become difficult owing to the restricted use of effective soil fumigant, methyl bromide, and other non-fumigant nematicides. Therefore, it is urgently necessary to develop microbial nematicide to replace chemical nematicides. In this study, the 50% aqueous methanol extraction solution of fermentation broths of 2,700 actinomycete strains were tested for their nematicidal activity against second stage of juveniles (J2s) of Meloidogyne incognita. As the results, only the 50% aqueous methanol extraction solution of AN110065, at 20% equivalent to 10% fermentation broth, showed strong nematicidal activity with 78.9% of mortality 24 h after treatment and 94.1% of mortality at 72 h. The 16S rRNA gene sequencing showed that the strain sequence was 99.78% identical to Streptomyces netropsis. The extract of S. netropsis AN110065 fermentation broth was successively partitioned with ethyl acetate and butanol and then the ethyl acetate, butanol and water layers were investigated for their nematicidal activity against the M. incognita. At $1000{\mu}g/ml$, ethyl acetate layer showed the strongest activity of 83.5% of juvenile mortality 72 h after treatment. The pot experiment using the fermentation broth of AN110065 on tomato plant against M. incognita displayed that it evidently suppressed gall formation at a 10-fold diluent treatment. The tomato plants treated with the fermentation broth of S. netropsis AN110065 did not show any phytotoxicity. The results suggest that S. netropsis AN110065 has a potential to serve as microbial nematicide in organic agriculture.
Keywords
Biocontrol; Bio-nematicide; Meloidogyne incognita; Nematicidal activity; Streptomyces netropsis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Lacey, E., Gill, J. H., Power, M. L., Rickards, R. W., O'shea, M. G. and Rothschild, J. M. 1995. Bafilolides, potent inhibitors of the motility and development of the free-living stages of parasitic nematodes. Int. J. Parasitol. 25: 349-357.   DOI
2 Lane, D. J. 1991. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M. editors. Nucleic acid techniques in bacterial systematics. New York, NY: John Wiley & Sons, Inc. pp. 115-175.
3 Le Dang, Q., Kim, W. K., Nguyen, C. M., Choi, Y. H., Choi, G. J., Jang, K. S., Park, M. S., Lim, C. H., Luu, N. H. and Kim, J.-C. 2011. Nematicidal and antifungal activities of annonaceous acetogenins from Annona squamosa against various plant pathogens. J. Agric. Food Chem. 59: 11160-11167.   DOI
4 McCart, J. P. 2009. Molecular approaches toward resistance to plant-parasitic nematdoes. In Cell Biology of Plant Nematode Parasitism, Plant Cell Monogr 15th ed. Berg, R.H and C.G. Tayor. (Eds). pp. 239-267. Springer. St. Louis, USA.
5 Nonaka, K., Tsukiyama, T., Okamoto, Y., Sato, K., Kumasaka, C., Yammoto, T., Maruyama, F., and Yoshikaw, H. 2000. New milbemycins from Streptomyces hygroscopicus subsp. aureolacrimosus: fermentation, isolation and structure elucidation. J. Antibiot. 53: 694-704.   DOI
6 Oka, Y., Nacar, S., Putievsky, E., Ravid, U., Yaniv, Z. and Spiegel, Y. 2000. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 90: 710-715.   DOI
7 Park, J., Seo, Y. and Kim, Y. H. 2014. Biological control of Meloidogyne hapla using an antagonistic bacterium. Plant Pathol. J. 30: 288-298.   DOI
8 Qiao, K., Liu, X., Wang, H., Xia, X., Ji, X. and Wang, K. 2011. Effect of abamectin on root-knot nematodes and tomato yield. Pest Manag. Sci. 68: 853-857.
9 Ruanpanum, P., Dame, Z. T., Laatsch, H. and Lumyong, S. 2011. 3-Methoxy-2-methyl-carbazole-1,4-quinone, carbazomycins D and F from Streptomyces sp. CMU-JP005. FEMS Microbiol. Lett. 322: 77-81.   DOI
10 Ruanpanun, P., Laatsch, H., Tangchitsomkid, N. and Lumyong, S. 2010. Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita. World J. Microbiol, Biotechnol. 27: 1373-1380.
11 Saitou, N. and Nei, M. 1987. The neighbor joining method: A new method for constructing phylogenetic tree. Mol. Biol. Evol. 4: 406-425.
12 Siddiqui, Z. A. and Mahmood, I. 1999. Role of bacteria in the management of plant parasitic nematodes: A review. Bioresource Tech. 69: 167-179.   DOI
13 Siddiqui, Z. A. and Futai, K. 2009. Biocontrol of Meloidogyne incognita on tomato using antagonistic fungi, plant-growth-promoting rhizobacteria and cattle manure. Pest Manag. Sci. 65: 943-948.   DOI
14 Skantar, A. M., Agama, K., Meyer, S. L., Carta, L. K. and Vinyard, B. T. 2005. Effects of geldanamycin on hatching and juvenile motility in Caenorhabditis elegans and Heterodera glycines. J. Chem. Ecol. 31: 2481-2491.   DOI
15 Southey, J. F. 1986. Laboratory methods for work with plant and soil nematodes. Ministry of Agriculture Fisheries and Food. Her Majesty's Stationery Office, London, UK. pp. 202.
16 Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI   ScienceOn
17 Taylor, A. L. and Sasser, J. N. 1978. Biology, identification and control of root-knot neamtodes (Meloidogyne species). Cooperative Publication Department Plant Pathology North Carolina State University and United States Agency for International Development, North Carolina State University Graphics, Raleigh, USA. pp. 111.
18 Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.   DOI
19 Tian, B., Yang, J. and Zhang, K.-Q. 2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbial Ecol. 61: 197-213.   DOI
20 Wei, L., Shao, Y., Wan, J. W., Feng, H., Zhu, H., Huang, H. and Zhou, Y. 2014. Isolation and Characterization of a rhizobacterial antagonist of root-knot nematodes. PLoS One 9: e85988.   DOI
21 Yoon, G. Y., Lee, Y. S., Lee, S. Y., Park, R. D., Hyun, H. N., Nam, Y. and Kim, K. Y. 2012. Effects on Meloidogyne incognita of chitinase, glucanase and a secondary metabolite from Streptomyces cacaoi GY525. Nematology 14: 175-184.   DOI
22 Zeng, Q., Huang, H., Zhu, J., Fang, Z., Sun, Q. and Bao, S. 2013. A new nematicidal compound produced by Streptomyces albogriseolus HA10002. Antonie van Leeuwenhoek 103: 1107-1111.   DOI
23 Abbott, W. S. 1925. A method for computing the effectiveness of an insecticide. J. Eco. Entomol. 18: 265-267.
24 Barker, K. R., Schmitt, D. P. and Imbriani, J. L. 1985. Nematode population dynamics with emphasis on determining damage potential to crops. In: K.R. Barker, C. C, Carter, and J. N Sasser (eds.). An advanced treatise on Meloidogyne, Vol. II. pp. 135-148. North Carolina State University, Raleigh, North Carolina, USA.
25 Berdy, J. 2005. Bioactive microbial metabolites. J. Antibiot. 58: 1-26.   DOI
26 Burg, R. W., Miller, B. M., Baker, E. E., Birnbaum, J., Currie, S. A., Hartman, R., Kong, Y. -L., Monaghan, R. L., Olson, G., Putter, I., Tunac, J. B., Wallick, H., Stapley, E. O., Oiwa, R. and Omura, S. 1979. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob. Agents Chemother. 15: 361-367.   DOI
27 Caboni, P., Aissani, N., Cabras, T., Falqui, A., Marotta, R., Liori, B., Ntalli, N., Sarais, G., Sasanelli, N. and Tocco, G. 2013. Potent nematicidal acitivity of phthalaldehyde, salicylaldehyde, and cinnamic aldehyde against Meloidogyne incognita. J. Agric. Food Chem. 61: 1794-1803.   DOI
28 Cabrera, J. M., Menjivar, R. D., Dababat, A. A. and Sikora, R. A. 2013. Properties and nematicide performance of avermectins. J. Phytopathol. 161: 65-69.   DOI
29 Cho, M. R., Lee, B. C., Kim, D. S., Jeon, H. Y., Yiem, M. S. and Lee, J. O. 2000. Distribution of plant-parasitic nematodes in fruit vegetable production areas in Korea and identification of root-knot nematodes by enzyme phenotypes. Korean J. Appl. Entomol. 39: 123-129.
30 Choi, Y. E. and Choo, H. Y. 1978. A study on root-knot nematodes affecting economic crops in Korea. Korean J. Plant Prot. 17: 89-98.
31 Hesseltine, C. W., Benedict, R. G. and Pridham, T. G. 1954. Useful criteria for species differentiation in the genus Streptomyces. Ann. N. Y. Acad. Sci. 60: 136-151.   DOI   ScienceOn
32 Hwang, S. M., Park, M. S., Kim, J. C., Jang, K. S., Choi, Y. H. and Choi, G. J. 2014. Occurrence of Meloidogyne incognita infecting resistant cultivars and development of an efficient screening method for resistant tomato to the Mi-virulent nematode. Korean J. Hort. Sci. Technol. 32: 217-226.   DOI   ScienceOn
33 Kakar, K. U., Nawaz, Z., Cui, Z., Almoneafy, A. A., Zhu, B. and Xie, G. L. 2014, Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1. Wold J. Microbiol. Biotechnol. 30: 469-478.   DOI
34 Khalil, M. S. 2013. Abamectin and azadirachitin as eco-friendly promising biorational tools in integrated nematodes management programs. J. Plant Pathol. Microb. 4: 1000174.
35 Khan, Z., Kim, S. G., Jeon, Y. H., Khan, H. U., Son, S. H. and Kim, Y. H. 2008. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresource Tech. 99: 3016-3023.   DOI
36 Kim, D. G. 2001. Occurrence of root-knot nematodes on fruit vegetables under greenhouse conditions in Korea. Res. Plant Dis. 7: 69-79. (In Korean)
37 Kim, K. H., Joe, Y. A., Choi, S. R. and Goo, Y. M. 1989. Comparative studies on streptomycin producing strains and media. Korean J. Biotechnol. Bioeng. 4: 162-166.
38 Kim, S. S., Kang, S. I., Kim, J. S., Lee, Y. S., Hong, S. H., Naing, K. W. and Kim, K. Y. 2011. Biological control of root-knot nematode by Streptomyces sampsonii KK1024. Korean J. Soil Sci. Fert. 44: 1150-1157.   DOI   ScienceOn