• Title/Summary/Keyword: nanostructured thin film

Search Result 53, Processing Time 0.031 seconds

Transparent Amorphous Oxide Semiconductor as Excellent Thermoelectric Materials (비정질 산화물 반도체의 열전특성)

  • Kim, Seo-Han;Park, Cheol-Hong;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.52-52
    • /
    • 2018
  • Only approximately 30% of fossil fuel energy is used; therefore, it is desirable to utilize the huge amounts of waste energy. Thermoelectric (TE) materials that convert heat into electrical power are a promising energy technology. The TE materials can be formed either as thin films or as bulk semiconductors. Generally, thin-film TE materials have low energy conversion rates due to their thinness compared to that in bulk. However, an advantage of a thin-film TE material is that the efficiency can be smartly engineered by controlling the nanostructure and composition. Especially nanostructured TE thin films are useful for mitigating heating problems in highly integrated microelectronic devices by accurately controlling the temperature. Hence, there is a rising interest in thin-film TE devices. These devices have been extensively investigated. It is demonstrated that transparent amorphous oxide semiconductors (TAOS) can be excellent thermoelectric (TE) materials, since their thermal conductivity (${\kappa}$) through a randomly disordered structure is quite low, while their electrical conductivity and carrier mobility (${\mu}$) are high, compared to crystalline semiconductors through the first-principles calculations and the various measurements for the amorphous In-Zn-O (a-IZO) thin film. The calculated phonon dispersion in a-IZO shows non-linear phonon instability, which can prevent the transport of phonon. The a-IZO was measured to have poor ${\kappa}$ and high electrical conductivity compared to crystalline $In_2O_3:Sn$ (c-ITO). These properties show that the TAOS can be an excellent thin-film transparent TE material. It is suggested that the TAOS can be employed to mitigate the heating problem in the transparent display devices.

  • PDF

Formation of Silver Nanoparticles on Silica by Solid-State Dewetting of Deposited Film (증착 박막의 비젖음에 의한 실리카 표면 위 은나노 입자형성)

  • Kim, Jung-Hwan;Choi, Chul-Min;Hwang, So-Ri;Kim, Jae-Ho;Oh, Yong-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.856-860
    • /
    • 2010
  • Silver nanoparticles were formed on silica substrates through thin film dewetting at high temperature. The microstructural and morphological evolution of the particles were characterized as a function of processing variables such as initial film thickness, annealing time, and temperature. Silver thin films were deposited onto the silica using a pulsed laser deposition system and annealed in reducing atmosphere to induce agglomeration of the films. The film thicknesses before dewetting were in the range of 5 to 25 nm. A noticeable agglomeration occurs with annealing at temperatures higher than $300^{\circ}C$, and higher annealing temperature increases particle size uniformity for the same film thickness sample. Average particle size linearly correlates to the film thickness, but it does not strongly depend on annealing temperature and time, although threshold temperature for complete dewetting increases with an increase of film thickness. Lower annealing temperature develops faceted surface morphology of the silver particles by enhancing the growth of the low index crystal plane of the particles.

Electroless Deposition and Surface-Enhanced Raman Scattering Application of Palladium Thin Films on Glass Substrates

  • Shin, Kuan Soo;Cho, Young Kwan;Kim, Kyung Lock;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.743-748
    • /
    • 2014
  • In this work, we describe a very simple electroless deposition method to prepare moderate-SERS-active nanostructured Pd films deposited on the glass substrates. To the best of our knowledge, this is the first report on the one-pot electroless method to deposit Pd nanostructures on the glass substrates. This method only requires the incubation of negatively charged glass substrates in ethanol-water mixture solutions of $Pd(NO_3)_2$ and butylamine at elevated temperatures. Pd films are then formed exclusively and evenly on glass substrates. Due to the aggregated structures of Pd, the SERS spectra of benzenethiol and organic isonitrile could be clearly identified using the Pd-coated glass as a SERS substrate. This one-step fabrication method of Pd thin film on glass is cost-effective and suitable for the mass production.

NanoAnalysis with TOF-MEIS (TOF-MEIS 나노분석법)

  • Yu, Kyu-Sang;Moon, DaeWon
    • Vacuum Magazine
    • /
    • v.2 no.2
    • /
    • pp.17-23
    • /
    • 2015
  • Medium Energy Ion Scattering (MEIS) has been successfully used for ultrathin film analysis such as gate oxides and multilayers due to its single atomic depth resolution in compostional and structural depth profiling. Recently, we developed a time-of-flight (TOF) MEIS for the first time, which can analyze a $10{\mu}m$ small spot. Small spot analysis would be useful for test pattern analysis in semiconductor industry and various thin film technology. The ion beam damage problem is minimized due to its improved collection efficiency by orders of magnitude and the ion beam neutralization problem is removed completely for quantitative analysis. Newly developed TOF-MEIS has been applied for gate oxides, ultra shallow junctions, nanoparticles, FINFET structures to provide compositional and structural profiles. Further development for submicron spot analysis and applications for functional nano thin films and nanostructured materials are expected for various nanotechnology and biotehnology.

Nanostructured Ni-Mn double hydroxide for high capacitance supercapacitor application

  • Pujari, Rahul B.;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.71-75
    • /
    • 2021
  • Recently, transition-metal-based hydroxide materials have attracted significant attention in various electrochemical applications owing to their low cost, high stability, and versatility in composition and morphology. Among these applications, transition-metal-based hydroxides have exhibited significant potential in supercapacitors owing to their multiple redox states that can considerably enhance the supercapacitance performance. In this study, nanostructured Ni-Mn double hydroxide is directly grown on a conductive substrate using an electrodeposition method. Ni-Mn double hydroxide exhibits excellent electrochemical charge-storage properties in a 1 M KOH electrolyte, such as a specific capacitance of 1364 Fg-1 at a current density of 1 mAcm-2 and a capacitance retention of 94% over 3000 charge-discharge cycles at a current density of 10 mAcm-2. The present work demonstrates a scalable, time-saving, and cost-effective approach for the preparation of Ni-Mn double hydroxide with potential application in high-charge-storage kinetics, which can also be extended for other transition-metal-based double hydroxides.

Thin Films for Environmental Application and Energy Devices

  • Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.91-91
    • /
    • 2012
  • We aim in synthesizing various functional thin films thinner than ~ 10 nm for environmental applications and photovoltaic devices. Atomic layer deposition is used for synthesizing inorganic thin films with a precise control of the film thickness. Several examples about application of our thin films for removing volatile organic compounds (VOC) will be highlighted, which are summarized in the below. 1) $TiO_2$ thin films prepared by ALD at low temperature ($<100^{\circ}C$) show high adsorption capacity for toluene. In combination with nanostructured templates, $TiO_2$ thin films can be used as building-block of high-performing VOC filter. 2) $TiO_2$ thin films on carbon fibers and nanodiamonds annealed at high temperatures are active for photocatalytic oxidation of VOCs, i.e. photocatalytic filter can be created by atomic layer deposition. 3) NiO can catalyze oxidation of toluene to $CO_2$ and $H_2O$ at $<300^{\circ}C$. $TiO_2$ thin films on NiO can reduce poisoning of NiO surfaces by reaction intermediates below $200^{\circ}C$. We also fabricated inverted organic solar cell based on ZnO electron collecting layers on ITO. $TiO_2$ thin films with a mean diameter less than 3 nm on ZnO can enhance photovoltaic performance by reducing electron-hole recombination on ZnO surfaces.

  • PDF

Order-to-disorder Behavior of Block Copolymer Films

  • Ryu, Du-Yeol;Kim, Eun-Hye;Choe, Seung-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.6.2-6.2
    • /
    • 2011
  • Block copolymer (BCP) self-assembly in a film geometry has recently been the focus of increased research interest due to their potential use as templates and scaffolds for the fabrication of nanostructured materials. The phase behavior in a thin film geometry that confines polymer chains to the interfaces will be influenced by the interfacial interactions at substrate/polymer and polymer/air and the commensurability between the equilibrium period (L0) of the BCP and the total film thickness. We investigated the phase transitions for the films of block copolymers (BCPs) on the modified surface, like the order-to-disorder transition (ODT) by in-situ grazing incidence small angle x-ray scattering (GISAXS) and transmission electron microscopy (TEM). The selective interactions on the surface by a PS-grafted substrate provide the preferential interactions with the PS component of the block, while a random copolymer (PS-r-PMMA) grafted substrate do the balanced interfacial interactions on the surface. The thickness dependence of order-to-disorder behavior for BCP films will be discussed in terms of the surface interactions.

  • PDF

Pattern Formation of Highly Ordered Sub-20 nm Pt Cross-Bar on Ni Thin Film (Ni 박막 위 20 nm급 고정렬 Pt 크로스-바 구조물의 형성 방법)

  • Park, Tae Wan;Jung, Hyunsung;Cho, Young-Rae;Lee, Jung Woo;Park, Woon Ik
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.910-914
    • /
    • 2018
  • Since catalyst technology is one of the promising technologies to improve the working performance of next generation energy and electronic devices, many efforts have been made to develop various catalysts with high efficiency at a low cost. However, there are remaining challenges to be resolved in order to use the suggested catalytic materials, such as platinum (Pt), gold (Au), and palladium (Pd), due to their poor cost-effectiveness for device applications. In this study, to overcome these challenges, we suggest a useful method to increase the surface area of a noble metal catalyst material, resulting in a reduction of the total amount of catalyst usage. By employing block copolymer (BCP) self-assembly and nano-transfer printing (n-TP) processes, we successfully fabricated sub-20 nm Pt line and cross-bar patterns. Furthermore, we obtained a highly ordered Pt cross-bar pattern on a Ni thin film and a Pt-embedded Ni thin film, which can be used as hetero hybrid alloy catalyst structure. For a detailed analysis of the hybrid catalytic material, we used scanning electron microscope (SEM), transmission electron microscope (TEM) and energy-dispersive X-ray spectroscopy (EDS), which revealed a well-defined nanoporous Pt nanostructure on the Ni thin film. Based on these results, we expect that the successful hybridization of various catalytic nanostructures can be extended to other material systems and devices in the near future.

Fabrication of Nanostructured Films of Block Copolymers for Nanolithographical Masks (나노리소그래피 마스크용 블록공중합체 나노구조 필름의 제조)

  • Park Dae-Ho;Sohn Byeong-Hyeok;Jung Jin Chul;Zin Wang-Cheol
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.181-186
    • /
    • 2005
  • We fabricated thin films of polystyrene-block-poly(methyl methacrylate)(PS -b-PMMA) on the self-assembled monolayers(SAM) of 3-(p-methoxyphenyl)propyltrichlorosilane(MPTS) on silicon wafers. Cylindrical nanodomains of PMMA or PS were oriented perpendicular to the surface of silicon wafers due to the neutral affinity of the SAM to PS and PMMA blocks. By selective removal of the PMMA block with UV irradiation and washing, nanoporous films and nanorod assemblies were produced. The nanoporous film can be used for a nanolithographical mask.

  • PDF

Green Synthesis of Ag Thin Films on Glass Substrates and Their Application in Surface-Enhanced Raman Scattering

  • Cho, Young Kwan;Kim, In Hyun;Shin, Kuan Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2942-2946
    • /
    • 2013
  • Nanostructured Ag thin films could be facilely prepared by soaking glass substrates in ethanolic solutions containing $Ag_2O$ powders at an elevated temperature. The formation of zero-valent Ag was corroborated using X-ray diffraction and X-ray photoelectron spectroscopy. The deposition of Ag onto a glass substrate was readily controlled simply by changing the reaction time. Due to the aggregated structures of Ag, the surface-enhanced Raman scattering spectra of benzenethiol could be clearly identified using the Ag-coated glass. The enhancement factor at 514.5 nm excitation estimated using benzenethiol reached $1.0{\times}10^5$ while the detection limit of rhodamine 6G was found to be as low as $1.0{\times}10^{-13}$ M. Since this one-pot fabrication method is eco-friendly and is suitable for the mass production of diverse Ag films, it is expected to play a significant role in the development of surface plasmon-based analytical devices.