Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.09.856

Formation of Silver Nanoparticles on Silica by Solid-State Dewetting of Deposited Film  

Kim, Jung-Hwan (Department of Mat. Sci. & Eng., Hanbat National University)
Choi, Chul-Min (Department of Mat. Sci. & Eng., Hanbat National University)
Hwang, So-Ri (Department of Mat. Sci. & Eng., Hanbat National University)
Kim, Jae-Ho (Department of Mat. Sci. & Eng., Hanbat National University)
Oh, Yong-Jun (Department of Mat. Sci. & Eng., Hanbat National University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.9, 2010 , pp. 856-860 More about this Journal
Abstract
Silver nanoparticles were formed on silica substrates through thin film dewetting at high temperature. The microstructural and morphological evolution of the particles were characterized as a function of processing variables such as initial film thickness, annealing time, and temperature. Silver thin films were deposited onto the silica using a pulsed laser deposition system and annealed in reducing atmosphere to induce agglomeration of the films. The film thicknesses before dewetting were in the range of 5 to 25 nm. A noticeable agglomeration occurs with annealing at temperatures higher than $300^{\circ}C$, and higher annealing temperature increases particle size uniformity for the same film thickness sample. Average particle size linearly correlates to the film thickness, but it does not strongly depend on annealing temperature and time, although threshold temperature for complete dewetting increases with an increase of film thickness. Lower annealing temperature develops faceted surface morphology of the silver particles by enhancing the growth of the low index crystal plane of the particles.
Keywords
nanostructured materials; dewetting; diffusion; annealing; transmission electron microscopy (TEM);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 A. L. Giermann and C. V. Thompson, Appl. Phys. Lett. 86, 121903 (2005).   DOI   ScienceOn
2 Y. F. Guan, R. C. Pearce, A. V. Melechko, D. K. Hensley, M. L. Simpson, and P. D. Rack, Nanotechnology 19, 235604 (2008).   DOI   ScienceOn
3 C. A. Ross, F. J. Castano, E. Rodriguez, S. Haratani, B. Vogeli, and Henry I. Smith, J. Appl. Phys. 97, 053902 (2005).   DOI   ScienceOn
4 Y. J. Oh, C. A. Ross, Y. S. Jung, Y. Wang, and C. V. Thompson, Small 7, 860 (2009).
5 S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, Adv. Mater. 13, 1501 (2001).   DOI   ScienceOn
6 W. Wei. S, Li, L. Qin, C. Xue, J. E. Millstone, X. Xu, G. C. Schatz, and C. A. Mirkin, Nano Letters 8, 3446 (2008).   DOI   ScienceOn
7 Z. Ouyang, F. Beck, O. Kunz, P. Campbell, K. R. Catchpole, S. Varlamov, S. Pillai, and M. A. Green, 24th European Conference on Photovoltaic Solar Energy Conversion (EUPVSEC), p.2608, Hamburg, Germany (2009).
8 H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, Applied Physics Letters 85, 1317 (2004).   DOI   ScienceOn
9 S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).   DOI   ScienceOn
10 W. K. Choi, T. H. Liew, H. G. Chew, F. Zheng, C. V. Thompson, Y.Wang, M. H. Hong, X. D. Wang, L. Li, and J. Yun, Small 4, 330 (2008).   DOI   ScienceOn
11 S. H. Hwang, J. H. Kim, and Y. J. Oh, J. Kor. Inst. Met. & Mater. 47, 316 (2009).
12 W. Kan and H. Wong, J. Appl. Phys. 97, 043515 (2005).   DOI   ScienceOn