Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.3.743

Electroless Deposition and Surface-Enhanced Raman Scattering Application of Palladium Thin Films on Glass Substrates  

Shin, Kuan Soo (Department of Chemistry, Soongsil University)
Cho, Young Kwan (Department of Chemistry, Soongsil University)
Kim, Kyung Lock (Department of Chemistry, Seoul National University)
Kim, Kwan (Department of Chemistry, Seoul National University)
Publication Information
Abstract
In this work, we describe a very simple electroless deposition method to prepare moderate-SERS-active nanostructured Pd films deposited on the glass substrates. To the best of our knowledge, this is the first report on the one-pot electroless method to deposit Pd nanostructures on the glass substrates. This method only requires the incubation of negatively charged glass substrates in ethanol-water mixture solutions of $Pd(NO_3)_2$ and butylamine at elevated temperatures. Pd films are then formed exclusively and evenly on glass substrates. Due to the aggregated structures of Pd, the SERS spectra of benzenethiol and organic isonitrile could be clearly identified using the Pd-coated glass as a SERS substrate. This one-step fabrication method of Pd thin film on glass is cost-effective and suitable for the mass production.
Keywords
Surface-enhanced Raman scattering; $Pd(NO_3)_2$; Butylamine; Ethanol; Pd film;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Moskovits, M. Rev. Mod. Phys. 1985, 57, 783.   DOI
2 Potara, M.; Baia, M.; Farcau, C.; Astilean, S. Nanotechnology 2012, 23, 055501.   DOI
3 Botta, R.; Upender, G.; Sathyavathi, R.; Narayana Rao, D.; Bansal, C. Mater. Chem. Phys. 2013, 137, 699.   DOI
4 Schatz, G. C., Van Duyne, R. P., Chalmers, J. M., Griffiths, P. R., Eds.; In Handbook of Vibrational Spectroscopy; John Wiley & Sons: Chichester, U.K., 2002; Vol. 1.
5 M, P.; A, O. Surf. Sci. 1998, 406, 125.   DOI
6 Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J. Nano Lett. 2005, 5, 1569.   DOI   ScienceOn
7 Joo, S.; Chung, T. D.; Jang, W. C.; Gong, M.; Geum, N.; Kim, K. Langmuir 2002, 18, 8813.   DOI   ScienceOn
8 Baia, M.; Astilean, S.; Iliescu, T. Raman and SERS Investigations of Pharmaceuticals; Plenum Press: Berlin, 2008.
9 Zou, S.; Weaver, M. J. Anal. Chem. 1998, 70, 2387.   DOI
10 Tian, Z.; Ren, B.; Wu, D. J. Phys. Chem. B 2002, 106, 9463.
11 Cai, W. B.; Ren, B.; Li, X. Q.; She, C. X.; Liu, F. M.; Cai, X. W.; Tian, Z. Q. Surf. Sci. 1998, 406, 9.   DOI
12 Shen, C. M.; Su, Y. K.; Yang, H. T.; Yang, T. Z.; Gao, H. J. Chem. Phys. Lett. 2003, 373, 39.   DOI
13 Voogt, E. H.; Mens, A. J. M.; Gijzeman, O. L. J.; Geus, J. W. Surf. Sci. 1996, 350, 21.   DOI
14 Moulson, A. J.; Roberts, J. P. Trans. Faraday Soc. 1961, 57, 1208.   DOI
15 Wan, L.; Terashima, M.; Noda, H.; Osawa, M. J. Phys. Chem. B 2000, 104, 3563.
16 Kim, K.; Kim, K. L.; Shin, K. S. J. Phys. Chem. C 2011, 115, 14844.   DOI
17 McLellan, J. M.; Xiong, Y. J.; Hu, M.; Xia, Y. N. Chem. Phys. Letters 2006, 417, 230.   DOI
18 Liu, Z.; Yang, Z. L.; Cui, L.; Ren, B.; Tian, Z. Q. J. Phys. Chem. C 2007, 111, 1770.   DOI
19 Kim, N. H.; Kim, K. J. Phys. Chem. B 2006, 110, 1837.   DOI   ScienceOn
20 Kim, K.; Kim, K. L.; Lee, H. B.; Shin, K. S. J. Phys. Chem. C 2010, 114, 18679.   DOI
21 Kim, K.; Kim, K. L.; Choi, J.; Lee, H. B.; Shin, K. S. J. Phys. Chem. C 2010, 114, 3448.   DOI
22 Shin, D.; Kim, K.; Shin, K. S. ChemPhysChem 2010, 11, 83.   DOI
23 Joo, S. W.; Kim, W. J.; Yun, W. S.; Hwang, S.; Choi, I. S. Appl. Spectrosc. 2004, 58, 218.   DOI   ScienceOn
24 Kim, K.; Kim, K. L.; Choi, J.; Shin, K. S. Phys. Chem. Chem. Phys. 2011, 13, 5981.   DOI
25 Guy, M. P.; Guy, J. T., Jr.; Bennett, D. W. J. Mol. Struct. THEOCHEM 1985, 122, 95.   DOI
26 Lee, J.; Shim, W.; Lee, E.; Noh, J.; Lee, W. Angew. Chem. Int. Ed. 2011, 50, 5301.   DOI
27 Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918.   DOI
28 Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818.   DOI
29 Studer, M.; Burkhardt, S.; Blaser, H. Chem. Commun. 1999, 1727.
30 Favier, F.; Walter, E. C.; Zach, M. P.; Benter, T.; Penner, R. M. Science 2001, 293, 2227.   DOI
31 Mu, S.; Tang, H.; Qian, S.; Pan, M.; Yuan, R. Carbon 2006, 44, 762.   DOI   ScienceOn
32 McLellan, J. M.; Xiong, Y.; Hu, M.; Xia, Y. Chem. Phys. Lett. 2006, 417, 230.   DOI
33 Park, H. K.; Yoon, J. K.; Kim, K. Langmuir 2006, 22, 1626.   DOI   ScienceOn
34 Xiong, Y.; McLellan, J. M.; Chen, J.; Yin, Y.; Li, Z.; Xia, Y. J. Am. Chem. Soc. 2005, 127, 17118.   DOI
35 Fang, P.; Li, J.; Yang, Z.; Li, L.; Ren, B.; Tian, Z. J. Raman Spectrosc. 2008, 39, 1679.   DOI
36 Pergolese, B.; Muniz-Miranda, M.; Bigotto, A. Chemical Physics Letters 2007, 438, 290.   DOI
37 Wang, Y.; Zhao, Y.; Bao, T.; Li, X.; Su, Y.; Duan, Y. Appl. Surf. Sci. 2012, 258, 8603.   DOI
38 Borchert, H.; Shevchenko, E. V.; Robert, A.; Mekis, I.; Kornowski, A.; Gerhard Grubel.; Weller, H. Langmuir 2005, 21, 1931.   DOI   ScienceOn
39 Su, F.; Zeng, J.; Bao, X.; Yu, Y.; Lee, J. Y.; Zhao, X. S. Chem. Mater. 2005, 17, 3960.   DOI
40 Chang, R., Furtak, K., E, T., Eds.; Surface Enhanced Raman Scattering; Plenum Press: New York, 1982.
41 Teranishi, T.; Miyake, M. Chem. Mater. 1998, 10, 594.   DOI   ScienceOn