Browse > Article
http://dx.doi.org/10.3365/KJMM.2018.56.12.910

Pattern Formation of Highly Ordered Sub-20 nm Pt Cross-Bar on Ni Thin Film  

Park, Tae Wan (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Jung, Hyunsung (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Cho, Young-Rae (Department of Materials Science and Engineering, Pusan National University)
Lee, Jung Woo (Department of Materials Science and Engineering, Pusan National University)
Park, Woon Ik (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Korean Journal of Metals and Materials / v.56, no.12, 2018 , pp. 910-914 More about this Journal
Abstract
Since catalyst technology is one of the promising technologies to improve the working performance of next generation energy and electronic devices, many efforts have been made to develop various catalysts with high efficiency at a low cost. However, there are remaining challenges to be resolved in order to use the suggested catalytic materials, such as platinum (Pt), gold (Au), and palladium (Pd), due to their poor cost-effectiveness for device applications. In this study, to overcome these challenges, we suggest a useful method to increase the surface area of a noble metal catalyst material, resulting in a reduction of the total amount of catalyst usage. By employing block copolymer (BCP) self-assembly and nano-transfer printing (n-TP) processes, we successfully fabricated sub-20 nm Pt line and cross-bar patterns. Furthermore, we obtained a highly ordered Pt cross-bar pattern on a Ni thin film and a Pt-embedded Ni thin film, which can be used as hetero hybrid alloy catalyst structure. For a detailed analysis of the hybrid catalytic material, we used scanning electron microscope (SEM), transmission electron microscope (TEM) and energy-dispersive X-ray spectroscopy (EDS), which revealed a well-defined nanoporous Pt nanostructure on the Ni thin film. Based on these results, we expect that the successful hybridization of various catalytic nanostructures can be extended to other material systems and devices in the near future.
Keywords
nanostructured materials; nano-transfer printing; catalyst; cross-bar nanostructure; nanostructural analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Debart, J. Bao, G. Armstrong, and P. G. Bruce, J. Power Sources 174, 1177 (2007).   DOI
2 M. Park, Y.-J. Jung, J. Kim, H. I. Lee, and J. Cho, Nano Lett. 13, 4833 (2013).   DOI
3 Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, Nano Lett. 12, 1946 (2012).   DOI
4 C. Liu, F. Li, L-P. Ma, and H.-M. Cheng, Adv. Mater. 22, E28 (2010).   DOI
5 R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, Nature Mater. 14, 271 (2015).   DOI
6 T. Park, K. Kim, and O. Song, Korean J. Met. Mater. 55, 440 (2017).   DOI
7 M. Penza, C. Martucci, and G. Cassano, Sens. Actuators B 50, 52 (1998).   DOI
8 J. C. Kim, H. K. Jun, J.-S. Huh, and D. D. Lee, Sens. Actuators B 45, 271 (1997).   DOI
9 Y.-G. Guo, J.-S. Hu, and L-J. Wan, Adv. Mater. 20, 2878 (2008).   DOI
10 S. Meesuk, J.-P. Cao, K. Sato, Y. Ogawa, and T. Takarada, Energy Fuels, 25, 4113 (2011).   DOI
11 G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, J. phys. Chem. Lett. 1, 2193 (2010).   DOI
12 M.-K. Min, J. Cho, K. Cho, and H. Kim, Electrochim. Acta 45, 4211 (2000).   DOI
13 M. Lefevre, E. Proietti, F. Jaouen, and J.-P. Dodelet, Science 324, 71 (2014).
14 C. M. Pedrero, H. Silva, D. A. P. Tanaka, S. Liguori, A. Iulianelli, A. Basile, and A. Mendes, Appl. Catal. B: Environ. 174, 67 (2015).
15 C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, and V. R. Stamenkovic, Science 343, 1339 (2014).   DOI
16 S. Yi, B. Yang, and Z.-S. Zhang, Met. Mater. Int. 23, 603 (2017).   DOI
17 X. Chen and H. J. Schluesener, Toxicol. Lett. 176, 1 (2008).   DOI