DOI QR코드

DOI QR Code

Formation of Silver Nanoparticles on Silica by Solid-State Dewetting of Deposited Film

증착 박막의 비젖음에 의한 실리카 표면 위 은나노 입자형성

  • Kim, Jung-Hwan (Department of Mat. Sci. & Eng., Hanbat National University) ;
  • Choi, Chul-Min (Department of Mat. Sci. & Eng., Hanbat National University) ;
  • Hwang, So-Ri (Department of Mat. Sci. & Eng., Hanbat National University) ;
  • Kim, Jae-Ho (Department of Mat. Sci. & Eng., Hanbat National University) ;
  • Oh, Yong-Jun (Department of Mat. Sci. & Eng., Hanbat National University)
  • 김정환 (한밭대학교 신소재공학부) ;
  • 조철민 (한밭대학교 신소재공학부) ;
  • 황소리 (한밭대학교 신소재공학부) ;
  • 김재호 (한밭대학교 신소재공학부) ;
  • 오용준 (한밭대학교 신소재공학부)
  • Received : 2010.05.24
  • Published : 2010.09.22

Abstract

Silver nanoparticles were formed on silica substrates through thin film dewetting at high temperature. The microstructural and morphological evolution of the particles were characterized as a function of processing variables such as initial film thickness, annealing time, and temperature. Silver thin films were deposited onto the silica using a pulsed laser deposition system and annealed in reducing atmosphere to induce agglomeration of the films. The film thicknesses before dewetting were in the range of 5 to 25 nm. A noticeable agglomeration occurs with annealing at temperatures higher than $300^{\circ}C$, and higher annealing temperature increases particle size uniformity for the same film thickness sample. Average particle size linearly correlates to the film thickness, but it does not strongly depend on annealing temperature and time, although threshold temperature for complete dewetting increases with an increase of film thickness. Lower annealing temperature develops faceted surface morphology of the silver particles by enhancing the growth of the low index crystal plane of the particles.

Keywords

Acknowledgement

Supported by : 한국산업기술진흥원, 한국연구재단

References

  1. A. L. Giermann and C. V. Thompson, Appl. Phys. Lett. 86, 121903 (2005). https://doi.org/10.1063/1.1885180
  2. Y. F. Guan, R. C. Pearce, A. V. Melechko, D. K. Hensley, M. L. Simpson, and P. D. Rack, Nanotechnology 19, 235604 (2008). https://doi.org/10.1088/0957-4484/19/23/235604
  3. C. A. Ross, F. J. Castano, E. Rodriguez, S. Haratani, B. Vogeli, and Henry I. Smith, J. Appl. Phys. 97, 053902 (2005). https://doi.org/10.1063/1.1850998
  4. Y. J. Oh, C. A. Ross, Y. S. Jung, Y. Wang, and C. V. Thompson, Small 7, 860 (2009).
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, Adv. Mater. 13, 1501 (2001). https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
  6. W. Wei. S, Li, L. Qin, C. Xue, J. E. Millstone, X. Xu, G. C. Schatz, and C. A. Mirkin, Nano Letters 8, 3446 (2008). https://doi.org/10.1021/nl8023164
  7. Z. Ouyang, F. Beck, O. Kunz, P. Campbell, K. R. Catchpole, S. Varlamov, S. Pillai, and M. A. Green, 24th European Conference on Photovoltaic Solar Energy Conversion (EUPVSEC), p.2608, Hamburg, Germany (2009).
  8. H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, Applied Physics Letters 85, 1317 (2004). https://doi.org/10.1063/1.1784542
  9. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007). https://doi.org/10.1063/1.2734885
  10. W. K. Choi, T. H. Liew, H. G. Chew, F. Zheng, C. V. Thompson, Y.Wang, M. H. Hong, X. D. Wang, L. Li, and J. Yun, Small 4, 330 (2008). https://doi.org/10.1002/smll.200700728
  11. S. H. Hwang, J. H. Kim, and Y. J. Oh, J. Kor. Inst. Met. & Mater. 47, 316 (2009).
  12. W. Kan and H. Wong, J. Appl. Phys. 97, 043515 (2005). https://doi.org/10.1063/1.1845579