• Title/Summary/Keyword: nanoscale

Search Result 901, Processing Time 0.027 seconds

The Impact of TDDB Failure on Nanoscale CMOS Digital Circuits

  • Kim, Yeon-Bo;Kim, Kyung-Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.3
    • /
    • pp.27-34
    • /
    • 2012
  • This paper presents the impact of time dependent dielectric breakdown (TDDB, also called as gate oxide breakdown) failure on nanoscale digital CMOS Circuits. Recently, TDDB for ultra-thin gate oxides has been considered as one of the critical reliability issues which can lead to performance degradation or logic failures in nanoscale CMOS devices. Also, leakage power in the standby mode can be increased significantly. In this paper, TDDB aging effects on large CMOS digital circuits in the 45nm technology are analyzed. Simulation results show that TDDB effect on MOSFET circuits can result in more significant increase of power consumption compared to delay increase.

Nanoscale Probing of Ferroelectric Domain Switching Using Piezoresponse Force Microscopy

  • Yang, Sang Mo;Kim, Yunseok
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.340-349
    • /
    • 2019
  • In ferroelectric materials, piezoresponse force microscopy (PFM) has been widely used to explore ferroelectric domain switching. In this article, we review the fundamentals of nanoscale probing of ferroelectric domain switching using PFM, including the basic principles of PFM and a variety of PFM studies on local domain switching. We also introduce advanced PFM techniques for exploring switching behavior. Finally, we discuss several issues and perspectives in nanoscale probing of ferroelectric domain switching using PFM. PFM has played an important role in exploring switching behavior in ferroelectric materials, and it could be further developed to probe more detailed switching information.

NANOCAD Framework for Simulation of Quantum Effects in Nanoscale MOSFET Devices

  • Jin, Seong-Hoon;Park, Chan-Hyeong;Chung, In-Young;Park, Young-June;Min, Hong-Shick
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • We introduce our in-house program, NANOCAD, for the modeling and simulation of carrier transport in nanoscale MOSFET devices including quantum-mechanical effects, which implements two kinds of modeling approaches: the top-down approach based on the macroscopic quantum correction model and the bottom-up approach based on the microscopic non-equilibrium Green’s function formalism. We briefly review these two approaches and show their applications to the nanoscale bulk MOSFET device and silicon nanowire transistor, respectively.

A Study of Thermoelectric Material for Waste Heat Recovery (배열회수 발전용 열전소재 기초연구)

  • Kim, Ho-Young;Kim, Cham
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.175-180
    • /
    • 2008
  • Thermoelectric materials convert temperature difference to electric power for power generation and vice versa for refrigeration. Recent advances in enhancing the thermoelectric figure-of-merit shed light on efficient power generation from the waste heat available in industries and vehicles. Nanoscale phenomena with both nanoscale constituent-embedded bulk samples and nanoscale materials proving enhanced thermoelectric performance have been widely reviewed. Bulk materials of crystal-orientation and nano-structured particle embedding seem to promise a higher thermoelectric figure-of-merit and an effective power generation application. As a preliminary study, Si-Ge nanocomposite was prepared with spark plasma sintering method and its properties were examined.

  • PDF

Cellular Adhesions and Protein Dynamics on Carbon Nanotube/Polymer composites Surfaces

  • Gang, Min-Ji;Wang, Mun-Pyeong;Im, Yeon-Min;Kim, Jin-Guk;Gang, Dong-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.45.2-45.2
    • /
    • 2010
  • Possessing of carbon nanotubes in biopolymer intrigued much interest due to their mechanical and unique nanoscale surface properties. Surface stiffness can be controlled by the amount of carbon nanotubes in polymer and surface wettability can be altered by the order of nanoscale surface roughness. Protein adsorption mechanism on nanostructured carbon nanotube/polymer thin film will be discussed in this study. In addition, we identified that mechanical stimuli also contribute the messenchymal stem cell and bone cell interactions. Importantly, live cell analysis system also showed altered morphology and cellular functions. Thus, embedding of carbon nanostructures simultaneously contribute to protein adsorption and cellular interactions. In conclusion, this study demonstrated the evidence that nanoscale surface features determine the subsequent biological interactions, such as protein adsorption and cellular interactions.

  • PDF

INTUITIONISTIC FUZZY NORMAL SUBGROUP AND INTUITIONISTIC FUZZY ⊙-CONGRUENCES

  • Hur, Kul;Kim, So-Ra;Lim, Pyung-Ki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • We unite the two con concepts - normality We unite the two con concepts - normality and congruence - in an intuitionistic fuzzy subgroup setting. In particular, we prove that every intuitionistic fuzzy congruence determines an intuitionistic fuzzy subgroup. Conversely, given an intuitionistic fuzzy normal subgroup, we can associate an intuitionistic fuzzy congruence. The association between intuitionistic fuzzy normal sbgroups and intuitionistic fuzzy congruences is bijective and unigue. This leads to a new concept of cosets and a corresponding concept of guotient.

Interval-Valued Fuzzy Relations

  • Hur, Kur;Lee, Jeong-Gon;Choi, Jeong-Yeol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.425-431
    • /
    • 2009
  • By using the notion of interval-valued fuzzy relations, we forms the poset (IVFR (X), $\leq$) of interval-valued fuzzy relations on a given set X. In particular, we forms the subposet (IVFE (X), $\leq$) of interval-valued fuzzy equivalence relations on a given set X and prove that the poset (IVFE(X), $\leq$) is a complete lattice with the least element and greatest element.

Interval-Valued Fuzzy Congruences on a Semigroup

  • Lee, Jeong Gon;Hur, Kul;Lim, Pyung Ki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.231-244
    • /
    • 2013
  • We introduce the concept of interval-valued fuzzy congruences on a semigroup S and we obtain some important results: First, for any interval-valued fuzzy congruence $R_e$ on a group G, the interval-valued congruence class Re is an interval-valued fuzzy normal subgroup of G. Second, for any interval-valued fuzzy congruence R on a groupoid S, we show that a binary operation * an S=R is well-defined and also we obtain some results related to additional conditions for S. Also we improve that for any two interval-valued fuzzy congruences R and Q on a semigroup S such that $R{\subset}Q$, there exists a unique semigroup homomorphism g : S/R${\rightarrow}$S/G.

Nanoscale Fabrication in Aqueous Solution using Tribo-Nanolithography (Tribo-Nanolithography를 이용한 액중 나노가공기술 개발)

  • Park Jeong Woo;Lee Deug Woo;Kawasegi Noritaka;Morita Noboru
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.194-201
    • /
    • 2005
  • Nanoscale fabrication of silicon substrate in an aqueous solution based on the use of atomic force microscopy was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate easily by a simple scratching process (Tribo-Nanolithography, TNL), has been applied instead of conventional silicon cantilever for scanning. A slant nanostructure can be fabricated by a process in which a thin damaged layer rapidly forms in the substrate at the diamond tip-sample junction along scanning path of the tip and simultaneously the area uncovered with the damaged layer is being etched. This study demonstrates how the TNL parameters can affect the formation of damaged layer and the shape of 3-D structure, hence introducing a new process of AFM-based nanolithography in aqueous solution.

Nanoscale Fabrication in Aqueous Solution using Tribo-Nanolithography

  • Park, Jeong-Woo;Lee, Deug-Woo;Kawasegi, Noritaka;Morita, Noboru
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.8-13
    • /
    • 2006
  • Nanoscale fabrication of silicon substrate in an aqueous solution based on the use of atomic force microscopy was demonstrated. A specially designed cantilever with a diamond tip, allowing the formation of a mask layer on the silicon substrate by a simple scratching process (Tribo-Nanolithography, TNL), has been applied instead of the conventional silicon cantilever for scanning. A slant nanostructure can be fabricated by a process in which a thin mask layer rapidly forms on the substrate at the diamond tip-sample junction along scanning path of the tip, and simultaneously, the area uncovered with the mask layer is etched. This study demonstrates how the TNL parameters can affect the formation of the mask layer and the shape of 3-D structure, hence introducing a new process of AFM-based nanolithography in aqueous solution.